题目概述
给出n个闭区间段,要求选择尽可能少的区间,来完全覆盖一条指定线段,仅考虑覆盖整数点。
Input
第一行:N(1<=N<=25000)和T(1<=T<=1,000,000)
第二行至N+1行: 每一行一个闭区间。
Output
输出选择的区间个数,若不可能则输出-1。
解题思路
贪心策略,选择区间的左端点作为贪心指标,在按照如下的策略进行选择:
- 预处理。因为题目要求的是覆盖一条指定线段,因此对于每一个区间而言,不在该指定线段范围内的部分可以舍去,因此在数据读入的过程中,可以对每一个区间进行判断,如果该区间与目标线段完全没有交集,则直接舍弃,不考虑该区间;若有部分交集,则选择交集部分作为该区间的有效范围,存入结构体数组section[]中;
- 排序。将所有区间按照左端点升序进行排序;
- 开始选择。
-
- 1 若第一个区间的左端点就已经大于1(小于1的在步骤1中就已经进行的裁剪,不考虑,只存在大于1和等于1的情况),则说明绝对无法覆盖目标线段,直接输出-1即可;
-
- 2 否则(第一个区间的左端点等于1),定义start为1,end为第一个区间的右端点,作为当前区间的范围,同时定义s=1,作为已选择区间的个数,开始遍历后续所有区间;
-
- 3 判断下一个区间的左端点a与当前end+1的大小关系,若a大,则说明两个区间之间存在间隔,必然无法实现目标线段的覆盖,直接结束遍历,输出-1;否则的话,找到与当前区间邻接且右端点最大的一个区间,将该区间的左右端点值赋给start和end,同时s+1;
-
- 4 反复执行3,直到当前区间的右端点大于等于目标线段右端点,即end>=t时,跳出循环,输出s;若遍历完所有区间段后,end仍然小于t,说明无法完全覆盖目标线段,输出-1.
实现代码
#include<cstdio>
#include<algorithm>
using namespace std;
struct section
{
//区间结构体
int a,b;
bool operator<(const section &p) const
{
//按照区间左端点升序排序