归并排序法:
运用分治思想,使用递归技术,将规模较大的问题转换为结构相同的规模较小的子问题,待问题分解到最小时,由下至上逐层解决(这里采用边归并边排序的方式)。
/* 排序,并合并*/
void merge(int s,int m,int e,int *arrSrc ,int *arrRes){ int i,j,k; i = s,j = m+1,k = s; while(i<=m&&j<=e){ if(arrSrc[i]<arrSrc[j]) arrRes[k++] = arrSrc[i++]; else arrRes[k++] = arrSrc[j++]; } while(i<=m) arrRes[k++] = arrSrc[i++]; while(j<=e) arrRes[k++] = arrSrc[j++]; for(int i = s;i<=e;i++) arrSrc[i] = arrRes[i]; }
/* 归并排序 */ void mergeSort(int start,int end,int *arrSource,int *arrRes){ int m; //结束条件,将序列分解成长度为1的单元,并将其存入arrRes中 if(start==end){ arrRes[start] = arrSource[start]; } //将序列等分为2段,其结构父结构相同,分别归并,最后合并两个已排序的子序列 else{ m = (start+end)/2; //T(1) mergeSort(start,m,arrSource,arrRes); //T(n/2) mergeSort(m+1,end,arrSource,arrRes); //T(n/2) merge(start,m,end,arrSource,arrRes); //T(n2) } }
时间复杂度分析:
T(n) = 1 n = 1
= 2*T(n/2) + O(n2) n > 1