今天的第二篇博客!看我多荔枝,快给我晚饭加鸡腿(bushi
这篇也是csp-s的模拟练习题,欢迎各位和我一起刷题~
题目背景
学校艺术节上,规定合唱队要参加比赛,各个队员的衣服颜色不能很混乱:合唱队员应排成一横排,且衣服颜色必须是左右对称的。
例如:“红蓝绿蓝红”或“红蓝绿绿蓝红”都是符合的,而“红蓝绿红”或“蓝绿蓝红”就不符合要求。
合唱队人数自然很多,仅现有的同学就可能会有 3000 个。老师希望将合唱队调整得符合要求,但想要调整尽量少,减少麻烦。以下任一动作认为是一次调整:
题目描述
1、在队伍左或右边加一个人(衣服颜色依要求而定);
2、在队伍中任两个人中间插入一个人(衣服颜色依要求而定);
3、剔掉一个人;
4、让一个人换衣服颜色;
老师想知道就目前的队形最少的调整次数是多少,请你编一个程序来回答他。
因为加入合唱队很热门,你可以认为人数是无限的,即随时想加一个人都能找到人。同时衣服颜色也是任意的。
输入格式
第一行是一个整数n (1 <= n <= 3000)。
第二行是n个整数,从左到右分别表示现有的每个队员衣服的颜色号,都是1到3000的整数。
输出格式
一个数,即对于输入队列,要调整得符合要求,最少的调整次数。
输入输出样例
输入 #1
5 1 2 2 4 3
输出 #1
2
思路
这道题在洛谷里面是蓝题,其实真的不值得蓝,那我们就来分析一下昂~
大致思路就是建一个二维数组 dp[ i ][ j ] 表示从第i个人到第j个人对称的最小次数
这时候就大致可以得出动态转移方程了,如下
1.先设置一个长度l自2至n枚举
2.此时 i 从 1 枚举至n - l + 1,j 此时则为 i + l - 1。
3.当第 i 个人颜色等于第 j 个人时,dp[ i ][ j ] 则与 dp[ i + 1 ][ j - 1] 相同,赋值;
4.如果不同的话,则为 { dp[ i + 1][ j ],dp[ i ][ j - 1 ],dp[ i + 1][ j - 1 ] } 中次数最少的那一个再 + 1 了。
5.最后输出 dp[ 1 ][ n ] 则为正解。
分析完毕,上代码!
代码
#include<bits/stdc++.h>
using namespace std;
int n,a[3005];
int f[3005][3005];
int main()
{
cin >> n;
for(int i = 1; i <= n; i++) cin >> a[i];
for(int l = 2; l <= n; l++)
{
for(int i = 1; i + l - 1 <= n; i++)
{
int j = i + l - 1;
if(a[i] == a[j]) f[i][j] = f[i + 1][j - 1];
else f[i][j] = min(f[i + 1][j] + 1, min(f[i][j - 1] + 1, f[i + 1][j - 1] + 1));
}
}
cout << f[1][n];
return 0;
}
放张AC证:
洛谷关注@qiuwen谢谢喵~
如果看官们觉得对您有帮助的话请点赞+关注谢谢喵~
最后,祝所有看到的同学们csp复赛rp++!!!