【刷题日常】P3847 调整队形

今天的第二篇博客!看我多荔枝,快给我晚饭加鸡腿(bushi

这篇也是csp-s的模拟练习题,欢迎各位和我一起刷题~

题目背景

学校艺术节上,规定合唱队要参加比赛,各个队员的衣服颜色不能很混乱:合唱队员应排成一横排,且衣服颜色必须是左右对称的。

例如:“红蓝绿蓝红”或“红蓝绿绿蓝红”都是符合的,而“红蓝绿红”或“蓝绿蓝红”就不符合要求。

合唱队人数自然很多,仅现有的同学就可能会有 3000 个。老师希望将合唱队调整得符合要求,但想要调整尽量少,减少麻烦。以下任一动作认为是一次调整:

题目描述

1、在队伍左或右边加一个人(衣服颜色依要求而定);

2、在队伍中任两个人中间插入一个人(衣服颜色依要求而定);

3、剔掉一个人;

4、让一个人换衣服颜色;

老师想知道就目前的队形最少的调整次数是多少,请你编一个程序来回答他。

因为加入合唱队很热门,你可以认为人数是无限的,即随时想加一个人都能找到人。同时衣服颜色也是任意的。

输入格式

第一行是一个整数n (1 <= n <= 3000)。

第二行是n个整数,从左到右分别表示现有的每个队员衣服的颜色号,都是1到3000的整数。

输出格式

一个数,即对于输入队列,要调整得符合要求,最少的调整次数。

输入输出样例

输入 #1

5
1 2 2 4 3

输出 #1

2

思路 

这道题在洛谷里面是蓝题,其实真的不值得蓝,那我们就来分析一下昂~

大致思路就是建一个二维数组 dp[ i ][ j ] 表示从第i个人到第j个人对称的最小次数

这时候就大致可以得出动态转移方程了,如下

1.先设置一个长度l自2至n枚举

2.此时 i 从 1 枚举至n - l + 1,j 此时则为 i + l - 1。

3.当第 i 个人颜色等于第 j 个人时,dp[ i ][ j ] 则与 dp[ i + 1 ][ j - 1] 相同,赋值;

4.如果不同的话,则为 { dp[ i + 1][ j ],dp[ i ][ j - 1 ],dp[ i + 1][ j - 1 ] } 中次数最少的那一个再 + 1 了。

5.最后输出 dp[ 1 ][ n ] 则为正解。

分析完毕,上代码!

代码

#include<bits/stdc++.h>
using namespace std;
int n,a[3005];
int f[3005][3005];

int main()
{
	cin >> n;
	for(int i = 1; i <= n; i++) cin >> a[i];
	for(int l = 2; l <= n; l++)
    {
		for(int i = 1; i + l - 1 <= n; i++)
        {
			int j = i + l - 1;
			if(a[i] == a[j])     f[i][j] = f[i + 1][j - 1];
			else f[i][j] = min(f[i + 1][j] + 1, min(f[i][j - 1] + 1, f[i + 1][j - 1] + 1));
		}
	}
	cout << f[1][n];
	return 0;
}

放张AC证:

洛谷关注@qiuwen谢谢喵~

如果看官们觉得对您有帮助的话请点赞+关注谢谢喵~ 

最后,祝所有看到的同学们csp复赛rp++!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值