《3 分钟学会!用这 4 个命令彻底掌控 Linux 文件权限(附实战案例)》

一、前言

在技术圈摸爬滚打,你是否遇到过这些糟心事?项目代码突然被他人误删,服务器因权限漏洞惨遭攻击,团队协作时文件权限混乱不堪…… 这些问题的根源,往往就藏在看似简单的文件权限管理中。别让小细节拖垮你的工作效率和系统安全!

*****************************************系好安全带,准备发车********************************************

二、文件权限基础:权限位与特殊标志

2.1 基础权限位(9 位模型)

# 示例:查看文件详细权限
ls -l file.txt
# 输出示例:-rw-r--r-- 1 user group 0 Jun 1 10:00 file.txt
# 权限位解析:
# rw-(所有者) r--(所属组) r--(其他用户)

2.2 特殊权限标志

标志作用场景命令示例
SUID普通用户临时获取文件所有者权限(如passwd命令)chmod u+s /usr/bin/passwd
SGID目录内新文件继承目录所属组chmod g+s /var/www/upload
Sticky Bit限制目录内文件只能被所有者删除(如/tmpchmod +t /tmp

三、chmod:灵活修改文件权限

3.1 符号表示法(按用户组操作)

# 给文件所有者添加执行权限
chmod u+x script.sh

# 移除所属组的写权限
chmod g-w data.txt

# 给所有用户添加读权限
chmod a+r *.log

# 精准设置:所有者读写,所属组只读,其他用户无权限
chmod u=rw,g=r,o= file.conf

3.2 数字表示法(权限值组合)

# rwxr-xr-- 对应 754
chmod 754 app.py

# 目录设置:所有者全权限,所属组读写,其他用户只读
chmod 764 /var/log/app

# 递归修改目录及其子文件权限(如项目根目录)
chmod -R 750 /project/

四、chown:修改文件所有者与所属组

4.1 单一操作:修改所有者

# 将文件所有者改为用户`dev`
sudo chown dev app.js

# 递归修改目录及其内容的所有者(需谨慎)
sudo chown -R dev /var/www/app

4.2 组合操作:同时修改所有者和所属组

# 格式:chown 所有者:所属组 文件
sudo chown dev:devteam config.ini

# 仅修改所属组(保留所有者不变)
sudo chown :devteam logs/

五、chgrp:专注所属组修改

# 将文件所属组改为`ops`
sudo chgrp ops data.csv

# 递归修改目录所属组(如团队共享目录)
sudo chgrp -R marketing /shared/marketing/

六、实战场景:搭建 Web 服务权限体系

场景需求:

创建 Web 项目目录,要求:

代码目录(html)仅允许所有者读写执行,其他用户只读上传目录(uploads

允许 Web 服务器用户(www-data

写入日志目录(logs)仅所有者可写

实现代码:

# 1. 创建目录结构
mkdir -p webroot/{html,logs,uploads}

# 2. 设置基础权限
chmod -R 755 webroot/html   # rwxr-xr-x(代码目录)
chmod -R 775 webroot/uploads # rwxrwxr-x(允许同组写入)
chmod -R 750 webroot/logs    # rwxr-----(仅所有者可写)

# 3. 修改所有者与所属组(假设Web用户为www-data)
sudo chown -R www-data:www-data webroot/

# 4. 设置SGID确保上传目录新文件继承所属组
chmod g+s webroot/uploads

七、常用命令速查表

操作类型命令示例说明
查看权限ls -l file显示文件详细权限
增加执行权限chmod +x script.sh给所有用户添加执行权限
设为只读文件chmod a-w data.txt移除所有用户的写权限
修改所有者sudo chown user file将文件所有者改为user
修改所属组sudo chgrp group dir将目录所属组改为group
递归修改权限chmod -R 644 /data递归设置目录下所有文件为 644
下面是一个基本的 PyTorch MNIST 数据集训练代码示例,包括数据加载、模型定义、优化器和损失函数的定义以及训练过程。 ``` import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) net = Net() # 定义优化器和损失函数 optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5) criterion = nn.CrossEntropyLoss() # 训练模型 def train(epoch): net.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = net(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(): net.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = net(data) test_loss += criterion(output, target) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, 5): train(epoch) test() ``` 这是一个简单的卷积神经网络模型,用于对 MNIST 手写数字进行分类。训练过程中使用了交叉熵损失函数和随机梯度下降优化器。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值