蝴蝶算法优化极限学习机预测及其MATLAB实现

150 篇文章 52 订阅 ¥59.90 ¥99.00
本文介绍了如何结合蝴蝶算法(BOA)优化极限学习机(ELM),以提升其预测性能。文章详细阐述了蝴蝶算法和ELM的基本原理,列举了优化ELM的步骤,并提供了MATLAB实现的示例代码,帮助读者理解和应用该方法。
摘要由CSDN通过智能技术生成

蝴蝶算法优化极限学习机预测及其MATLAB实现

极限学习机(Extreme Learning Machine,简称ELM)是一种基于单层前馈神经网络的机器学习算法,具有快速训练速度和良好的泛化能力。为了进一步提高ELM的性能,可以采用优化算法对其进行参数优化。本文将介绍如何使用蝴蝶算法(Butterfly Optimization Algorithm,简称BOA)来优化ELM,并提供相应的MATLAB代码。

  1. 蝴蝶算法(BOA)简介
    蝴蝶算法是一种基于自然界蝴蝶群体行为的优化算法。它模拟了蝴蝶群体的搜索和迁徙过程,通过寻找最佳解决方案来解决优化问题。蝴蝶算法的核心思想是通过不断迭代的过程来改进当前解决方案,并引入随机性以避免陷入局部最优解。

  2. 极限学习机(ELM)简介
    极限学习机是一种单层前馈神经网络,它的主要特点是随机初始化隐藏层权重和偏置,然后通过解析解的方式快速计算输出层权重。ELM的训练过程非常快速,并且具有较好的泛化能力。因此,将蝴蝶算法与ELM相结合,可以进一步提高ELM的性能。

  3. 蝴蝶算法优化极限学习机预测的步骤
    以下是使用蝴蝶算法优化极限学习机进行预测的步骤:
    (1) 准备数据集:收集用于训练和测试的数据集,并将其分为输入特征和目标变量。
    (2) 初始化ELM参数&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值