蝴蝶算法优化极限学习机预测及其MATLAB实现
极限学习机(Extreme Learning Machine,简称ELM)是一种基于单层前馈神经网络的机器学习算法,具有快速训练速度和良好的泛化能力。为了进一步提高ELM的性能,可以采用优化算法对其进行参数优化。本文将介绍如何使用蝴蝶算法(Butterfly Optimization Algorithm,简称BOA)来优化ELM,并提供相应的MATLAB代码。
-
蝴蝶算法(BOA)简介
蝴蝶算法是一种基于自然界蝴蝶群体行为的优化算法。它模拟了蝴蝶群体的搜索和迁徙过程,通过寻找最佳解决方案来解决优化问题。蝴蝶算法的核心思想是通过不断迭代的过程来改进当前解决方案,并引入随机性以避免陷入局部最优解。 -
极限学习机(ELM)简介
极限学习机是一种单层前馈神经网络,它的主要特点是随机初始化隐藏层权重和偏置,然后通过解析解的方式快速计算输出层权重。ELM的训练过程非常快速,并且具有较好的泛化能力。因此,将蝴蝶算法与ELM相结合,可以进一步提高ELM的性能。 -
蝴蝶算法优化极限学习机预测的步骤
以下是使用蝴蝶算法优化极限学习机进行预测的步骤:
(1) 准备数据集:收集用于训练和测试的数据集,并将其分为输入特征和目标变量。
(2) 初始化ELM参数&#