HyperLPR源码分析11

本文主要分析了HyperLPR中的slidingWindowsEval函数,该函数采用模板匹配法进行车牌识别。首先介绍获取图像并预处理的过程,包括图像转灰度和直方图均衡化。接着是图像分割,通过两轮分割确定每个文字区域。最后,利用预训练模型进行文字识别。
摘要由CSDN通过智能技术生成

2021SC@SDUSC

在本次分析中,我将会对前几次的成果做出总结,总结一下slidingWindowsEval函数的总体思路是什么样的。

slidingWindowsEval函数,进行车牌识别的思路就是模板匹配法,这是车牌识别的一个重要算法,这个算法只有一个总体思想,具体实现细节多种多样,根据具体情况不同而定。

一、获取图像并进行预处理

​
   windows_size = 16;
    stride = 1
    height= image.shape[0]
    t0 = time.time()
    data_sets = []

    for i in range(0,image.shape[1]-windows_size+1,stride):
        data = image[0:height,i:i+windows_size]
        data = cv2.resize(data,(23,23))
        # cv2.imshow("image",data)
        data = cv2.equalizeHist(data)
        data = data.astype(np.float)/255
        data=  np.expand_dims(data,3)
        data_sets.append(data)

    res = model2.predict(np.array(data_sets))
    print("分割",time.time() - t0)

    pin = res
    p = 1 -  (res.T)[1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值