在本次分析中,我将会对前几次的成果做出总结,总结一下slidingWindowsEval函数的总体思路是什么样的。
slidingWindowsEval函数,进行车牌识别的思路就是模板匹配法,这是车牌识别的一个重要算法,这个算法只有一个总体思想,具体实现细节多种多样,根据具体情况不同而定。
一、获取图像并进行预处理
windows_size = 16;
stride = 1
height= image.shape[0]
t0 = time.time()
data_sets = []
for i in range(0,image.shape[1]-windows_size+1,stride):
data = image[0:height,i:i+windows_size]
data = cv2.resize(data,(23,23))
# cv2.imshow("image",data)
data = cv2.equalizeHist(data)
data = data.astype(np.float)/255
data= np.expand_dims(data,3)
data_sets.append(data)
res = model2.predict(np.array(data_sets))
print("分割",time.time() - t0)
pin = res
p = 1 - (res.T)[1]