2021SC@SDUSC
这篇报告是最后一篇报告,这篇报告里就不分析新的内容了,而是对前面的内容做出一些总结,总结出几个图像处理、模式识别和机器学习方面算法的共同套路、规律。
一、模式识别的大体思路
车牌文字识别属于模式识别的一种,模式识别的大体思路就是特征提取与选择、学习训练、分类识别三步。
特征提取与选择,就是采集要识别的原始数据并且提取它们的特征,在车牌识别方面,就是获取标准车牌的图片,进行预处理,去除噪声、模糊和不相关的部分,裁剪下标准车牌文字,然后降低维数,从模式空间中选择最有利于模式分类的量作为特征,压缩模式维数,以找到最关键的分类特征,便于处理与识别。
那么已经提取好了模板特征,然后是进行训练,使机器具有分类识别功能,将人类的识别知识和方法以及关于分类识别对象的知识输入机器中,产生分类识别的规则和分析程序。在这里就是把模板车牌输入卷积神经网络进行训练,找出分类效果最好的参数。
最后一步就是应用模型进行分类识别了,这也就是我们这个程序的大体内容,因为前两步骤,内容复杂到我们无法分析,所以其实我们分析的都是这一步。这一步的思路就比较清晰了,输入待识别的车牌图片,进行预处理、裁剪,找出车牌位置,再找出车牌上文字的位置,然后给卷积神经网络做分类即可。
二、图像预处理的思路
其实我们分析的相当一部分内容都是图像预处理,我们输入的图片,其中只有一部分是车牌内容,并且没有做任何分割,这样的图片是不能直接输入卷积神经网络,与模板匹配的,必须进行预处理才能输入。
图像预处理大体步骤如下,并不是所有步骤都会用到&#