HyperLPR源码分析13

这篇报告总结了车牌文字识别的模式识别思路,包括特征提取、学习训练和分类识别三步。图像预处理涉及灰度化、二值化、裁剪规范化、平滑去噪和图像切分,为卷积神经网络的分类识别做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021SC@SDUSC

这篇报告是最后一篇报告,这篇报告里就不分析新的内容了,而是对前面的内容做出一些总结,总结出几个图像处理、模式识别和机器学习方面算法的共同套路、规律。

一、模式识别的大体思路

车牌文字识别属于模式识别的一种,模式识别的大体思路就是特征提取与选择、学习训练、分类识别三步。

特征提取与选择,就是采集要识别的原始数据并且提取它们的特征,在车牌识别方面,就是获取标准车牌的图片,进行预处理,去除噪声、模糊和不相关的部分,裁剪下标准车牌文字,然后降低维数,从模式空间中选择最有利于模式分类的量作为特征,压缩模式维数,以找到最关键的分类特征,便于处理与识别。

那么已经提取好了模板特征,然后是进行训练,使机器具有分类识别功能,将人类的识别知识和方法以及关于分类识别对象的知识输入机器中,产生分类识别的规则和分析程序。在这里就是把模板车牌输入卷积神经网络进行训练,找出分类效果最好的参数。

最后一步就是应用模型进行分类识别了,这也就是我们这个程序的大体内容,因为前两步骤,内容复杂到我们无法分析,所以其实我们分析的都是这一步。这一步的思路就比较清晰了,输入待识别的车牌图片,进行预处理、裁剪,找出车牌位置,再找出车牌上文字的位置,然后给卷积神经网络做分类即可。

二、图像预处理的思路

其实我们分析的相当一部分内容都是图像预处理,我们输入的图片,其中只有一部分是车牌内容,并且没有做任何分割,这样的图片是不能直接输入卷积神经网络,与模板匹配的,必须进行预处理才能输入。

图像预处理大体步骤如下,并不是所有步骤都会用到&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值