通过MonoFFT理解比特流计算(BSP)

本文分析了MonoFFT算法与比特流处理(BSP)在数字信号计算中的联系,特别是在波束合成中的应用。通过4阶简化旋转因子,将复数转换为二进制数据流,并利用比特流进行计算,讨论了不同角度的复数乘法,特别是90°旋转。还探讨了45°旋转时的幅度误差问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在下述文献[1]中提到了一种bit stream processing (BSP)的波束合成数字信号计算方法,没看太明白,直到结合单bit雷达中使用的MonoFFT算法,感觉二者有某些联系,遂做了如下的分析,MonoFFT算法可参考文献[2]。

采用4阶简化旋转因子,对应2位移相精度即90°

1、简化旋转因子:

引用MonoFFT技术中对旋转因子的简化,首先考虑4阶简化,即

旋转0°对应复乘exp(0*j)=1+0j;

旋转90°对应复乘exp(pi/2*j)=0+1j;

旋转180°对应复乘exp(pi*j)=-1+0j;

旋转270°对应复乘exp(3*pi/2*j)=0-1j;

对于多相复乘来说只涉及到与-1、0、1相乘的计算。

在matlab中可以通过函数rad2deg(phase(-1.0000 + 0.0000*j))来回推查看相位。

2、转换为二进制数据流:

任意一个复数,比如28+79*j,其原始的相位为

rad2deg(phase(28+79j))=70.4841

将其旋转90°即用(28+79j)*(0+1j)=-79.0000 +28.0000i

rad2deg(phase(-79+28j))=160.4841

比较可知160.4841-70.4841 = 90,即复数旋转了90°

将28+79j转换成二进制表示,利用matlab中的函数dec2bin

dec2bin(28) = ‘11100’;

Dec2bin(79) = ‘1001111’;

即28+79j所对应的复数数据流为0011100 + 1001111j。

3、比特流的计算:

可以根据复数的乘法公式来计算比特流乘法(a+bj)*(c+dj)=ac-bd+cbj+adj

下面列表计算(28+79j)*(0+1j)

a

0

0

1

1

1

0

0

b

1

0

0

1

1

1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值