单 bit 测频接收机原理仿真

本文探讨了单bit接收机的原理,通过简化数据采集和FFT计算,降低能耗和计算复杂度。仿真展示了不同量化组合对频谱的影响,强调了在特定情况下极低数据精度的效能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

数字化后面临的问题是大数据量采集、运算、传输、存储所需要的高能耗、计算资源、传输带宽以及存储空间,如果根据系统需求,能从最开始就降低数据采集量,那么后续一系列的设计都可以简化,这就是单bit接收机的出发点。这个思路被用在了不同的研究领域中,比如超表面阵列、混合精度深度学习芯片、混合精度MIMO通信,而单bit接收机就是其在电子对抗领域中比较典型的应用,通过简单的仿真可以理解其核心的技术原理。


一、单bit接收机原理

简述单 bit 接收机原理如下:
  1. ADC 仅采集单 bit 的量化数据,即只用符号位来表示采样时刻信号幅度大小;
  2. 同时简化在时域到频率傅里叶变换过程所采用的 FFT 计算,通过将 FFT 中旋转因子 简化为复数坐标系下位于坐标轴上的四个点,从而在硬件实现该 FFT 算法时能够只用加法 器完成运算,避免使用 DSP 资源,专业名词称之为 MonoFFT;
通过上述两个主要的技术措施,就能够降低硬件整体的实现方案,处理的数据量以及运
算复杂度,以最低的代价得到频谱,判断峰值即可得到最大信号的频率信息。
单 bit 接收机的优势是能够快速实现大瞬时带宽(瞬时带宽能够到达 10GHz)的单信号
测频功能;单其缺点也同样明显,低精度量化会在频域产生相关峰,导致动态范围有限,从
而影响多信号的检测与测频。

二、单bit接收机的仿真

1.仿真的量化组合

仿真的主要思路是分别将信号数据和 FFT 核进行量化,两两组合既有:
  1. 数据原精度+FFT 核原精度;
  2. 数据单 bit+FFT 核原精度;
  3. 数据原精度+FFT 核单 bit;
  4. 数据单 bit+FFT 核单 bit。

2.使用量化与矩阵乘法FFT

为了实现上述不同量化的组合,主要用到matlab中的量化器函数quantizer,此外为了能对FFT核进行单bit量化,不能使用matlab自带的fft()函数,需要根据公式实现数据向量与FFT核函数构建的矩阵相乘的形式。采样速率1024Hz,数据点数256点,正弦信号频率40Hz,图1对比了fft()函数与矩阵相乘形式得到的单边带频谱图,两者计算一致,数据与FFT核均为原精度。

图1 两种FFT计算得到的单边带频谱对比

3.四种量化组合效果的仿真对比

有了上述两个基本的函数,就可以分别对四种量化情况进行仿真,得到的四种结果如图
2 所示。
(1)具有大约 50dB 的信噪比和动态范围;
(2)对数据量化后,能够识别出频谱峰值,单 bit 量化产生了谐波杂散,同时由于 quantizer 量化是将数据用 0/1 二进制单 bit 量化,所以天然就具有 0.5 的偏置,这一偏置造成 0 频处的直流分量;
(3)对 FFT 核量化后,同样能够识别出频谱峰值,单同样产生较多杂散,0 频处无直流,该状态可对应一些采样器芯片集成 DDC 中所使用的粗混频硬核;
(4)最后数据与 FFT 均量化后,可以分辨出频率峰,但动态范围只剩有限的几 dB。
图2 四种量化情况的频谱对比

从图2看,单独使用数据量化或者FFT量化都能够较好的识别出频谱峰值,同时保持有10~20dB左右的动态,这是由于FFT过程,没有被量化的一方实际上扩展了数据精度。但数据与FFT都量化后,一方面动态只有1bit对应的大约6dB,另一方面有时频谱峰值会翻转到负向。


总结

通过简单的仿真和对比,说明满足某些功能,可能只需要极有限的数据精度,从而大幅节约计算资源和传输带宽,比如单bit的FFT的硬件实现就不需要使用乘法器,只需要累加即可。

超外差接收机是一种广泛应用在通信系统中的接收机,能够对接收到的信号进行量和解调。使用MATLAB进行仿真可以帮助工程师和研究人员更好地理解超外差接收机的工作原理和性能特点。 在MATLAB中,我们可以利用信号处理工具箱和通信工具箱来建立超外差接收机仿真模型。首先,我们需要对接收到的信号进行下变和混处理,然后使用滤波器进行信号处理,最后进行量和解调。通过调整模型中的各种参数,我们可以观察到不同条件下超外差接收机的性能表现。 通过MATLAB仿真,我们可以分析超外差接收机在不同干扰条件下的工作表现,比如噪声干扰、多径干扰等。同时,我们还可以通过仿真来优化超外差接收机的设计参数,比如滤波器的带宽、混器的增益等,以提高接收机的性能。 除此之外,利用MATLAB仿真还可以帮助我们更好地理解超外差接收机的工作原理,比如在谱分析、信号处理等方面。通过仿真的结果,我们可以得到一些定量的指标,比如量精度、信噪比等,从而对超外差接收机的性能有一个更全面的了解。 总的来说,利用MATLAB进行超外差接收机仿真可以帮助我们更好地理解其工作原理和优化设计,为通信系统的设计和性能分析提供有力的支持。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值