前言
数字化后面临的问题是大数据量采集、运算、传输、存储所需要的高能耗、计算资源、传输带宽以及存储空间,如果根据系统需求,能从最开始就降低数据采集量,那么后续一系列的设计都可以简化,这就是单bit接收机的出发点。这个思路被用在了不同的研究领域中,比如超表面阵列、混合精度深度学习芯片、混合精度MIMO通信,而单bit接收机就是其在电子对抗领域中比较典型的应用,通过简单的仿真可以理解其核心的技术原理。
一、单bit接收机原理
- ADC 仅采集单 bit 的量化数据,即只用符号位来表示采样时刻信号幅度大小;
- 同时简化在时域到频率傅里叶变换过程所采用的 FFT 计算,通过将 FFT 中旋转因子 简化为复数坐标系下位于坐标轴上的四个点,从而在硬件实现该 FFT 算法时能够只用加法 器完成运算,避免使用 DSP 资源,专业名词称之为 MonoFFT;
二、单bit接收机的仿真
1.仿真的量化组合
- 数据原精度+FFT 核原精度;
- 数据单 bit+FFT 核原精度;
- 数据原精度+FFT 核单 bit;
- 数据单 bit+FFT 核单 bit。
2.使用量化与矩阵乘法FFT
为了实现上述不同量化的组合,主要用到matlab中的量化器函数quantizer,此外为了能对FFT核进行单bit量化,不能使用matlab自带的fft()函数,需要根据公式实现数据向量与FFT核函数构建的矩阵相乘的形式。采样速率1024Hz,数据点数256点,正弦信号频率40Hz,图1对比了fft()函数与矩阵相乘形式得到的单边带频谱图,两者计算一致,数据与FFT核均为原精度。

3.四种量化组合效果的仿真对比

从图2看,单独使用数据量化或者FFT量化都能够较好的识别出频谱峰值,同时保持有10~20dB左右的动态,这是由于FFT过程,没有被量化的一方实际上扩展了数据精度。但数据与FFT都量化后,一方面动态只有1bit对应的大约6dB,另一方面有时频谱峰值会翻转到负向。
总结
通过简单的仿真和对比,说明满足某些功能,可能只需要极有限的数据精度,从而大幅节约计算资源和传输带宽,比如单bit的FFT的硬件实现就不需要使用乘法器,只需要累加即可。