深度学习模型:Sequential 和 Model 的介绍与简单应用

267 篇文章 ¥59.90 ¥99.00
本文介绍了Keras中两种主要的深度学习模型:Sequential和Model。Sequential模型适合简单的线性堆叠结构,而Model模型则提供更大的灵活性,支持复杂的神经网络结构,包括多输入多输出和分支。通过示例展示了如何使用这两种模型进行手写数字识别和图像分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习模型是近年来在人工智能领域取得巨大成功的关键技术之一。Keras 是一个常用的深度学习库,提供了多种模型构建方式。其中最常见的两种模型类型是 Sequential 和 Model。本文将介绍这两种模型类型的特点和用法,并给出一些简单的 Python 示例代码。

  1. Sequential 模型
    Sequential 模型是一种线性堆叠模型,是 Keras 中最简单的模型类型。它按照顺序将各个层一层一层地堆叠在一起,形成一个线性的计算图。这种模型适用于简单的层级堆叠结构,比如单输入单输出的任务。

下面是一个使用 Sequential 模型构建的简单示例,用于进行手写数字识别:

import keras
from keras.models import Sequential
from keras.layers import Dense

# 构建 Sequential
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值