基于混沌序列结合DWT+SVD实现图像加密解密

171 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Matlab实现基于混沌序列、离散小波变换(DWT)和奇异值分解(SVD)的图像加密解密算法。首先通过Logistic混沌映射生成混沌序列作为密钥,然后使用DWT将图像转换到频域,接着利用SVD增加加密复杂性。解密过程为加密操作的逆过程,确保了图像的安全性。该方法适用于学术研究,实际应用中还需考虑更多因素。

基于混沌序列结合DWT+SVD实现图像加密解密

在这篇文章中,我们将介绍如何使用混沌序列、离散小波变换(DWT)和奇异值分解(SVD)的组合来实现图像的加密和解密。我们将使用Matlab编程语言来实现这个算法,并提供相应的源代码。

图像加密是信息安全领域的一个重要研究方向,它涉及将图像转换成一种形式,使得未经授权的用户无法理解其内容。在本文中,我们将介绍一种基于混沌序列、DWT和SVD的图像加密算法,该算法可以提供较高的安全性和加密效果。

首先,我们需要生成一个混沌序列。混沌序列具有高度的随机性和不可预测性,可以用作加密算法的密钥。在这里,我们使用的是Logistic混沌映射器生成的混沌序列。下面是生成混沌序列的Matlab代码:

function chaosSeq = generateChaosSeq(seed, length)
    chaosSeq = zeros(
【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例和模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性和多场景适用能力。; 适合人群:具备一定Java和Vue开发基础的软件工程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的工作原理,并可根据实际业务需求进行功能扩展与模型优化。
【源码免费下载链接】:https://renmaiwang.cn/s/qdq3k 机器人控制柜是机器人的心脑神经中枢,主要负责协调机器人各项动作。其功能按钮及其连接口分别设计如下:* 电源开关:通过该开关可实现对整个控制柜供电状态的切换* 急停按钮:在紧急状况下按下此键将使机器人系统立即停止运行* 启动电机按钮:此操作需在手动模式下完成,以启动机器人的动力系统* 多工态调节器:提供三种运行模式选择,包括基础手动、标准自动及高级自动状态* 操作示教口:通过此端子可实现对机器人动作的实时监控与指导* USB接口:支持外设连接功能,例如用于数据采集的U盘设备接入* 网络通信端口:配置有以太网适配器,确保机器人与外部系统的数据交互 机器人的运行模式共有两种形态,即手动控制和自动调节。在手动模式下,操作者需将"手动/自动"钥匙旋至手动位置,并保持示教器侧面伺服使能键按压状态,即可对机器人进行实时指令输入;而当切换为自动模式时,则应将该钥匙旋转至自动位置并激活电机上电按钮,随后系统将启动预设的自动化运行流程 机器人开机前必须完成一系列准备工作:首先确认作业区域内的载物台已就位并放置好网兜;其次确保输送线系统处于正常运转状态;再次开启控制柜总电源开关;最后切换至所需运行模式并观察初始工作指示灯以确认系统准备状况。待机器人进入自动运行模式后,可实时查看输入输出端口信号强度来判断系统的稳定性和故障原因。 本机参数设置模块提供多样化的配置选项:包括码垛层数目设定、产品规格参数选择以及货物尺寸数据输入等功能。这些设置项可通过预装的示教器菜单系统进行操作调整,用户可根据实际需求灵活修改并保存相关参数值 为确保机器人系统的稳定性和可靠性,在日常使用过程中需特别注意以下几点:首先,当系统出现异常报警信息时应立即停止运行并检查根本原因后再重新启动;其次在切换至自动运行模式前必须确保系统处于原点状态,并可
内容概要:本文详细介绍了一个基于Python实现的FA-ESN模型,即利用萤火虫优化算法(FA)对回声状态网络(ESN)的关键超参数进行智能优化,进而提升其在多输入单输出回归预测任务中的性能。项目涵盖模型背景、意义、挑战与解决方案,重点阐述了ESN网络结构、FA优化机制、参数寻优流程及代码实现。通过将FA用于自动优化储备池规模、稀疏度、谱半径和泄露率等关键参数,实现了高精度、强鲁棒性的回归预测,并结合数据归一化、训练测试划分、性能评估与可视化模块,完成了全流程封装,具备良好的可扩展性与工程应用价值。; 适合人群:具备一定Python编程和机器学习基础,从事数据分析、智能建模、自动化控制、金融预测等相关领域的研究人员与工程技术人员,尤其适合希望深入理解智能优化算法与神经网络融合应用的中级开发者; 使用场景及目标:①解决传统ESN依赖人工调参导致效率低、易陷入局部最优的问题,实现自动化超参数寻优;②应用于工业过程建模、能源负荷预测、医疗数据分析、金融趋势预测等多输入单输出回归场景,提升模型预测精度与泛化能力; 阅读建议:此资源以实战为导向,包含完整模型设计思路与部分示例代码,建议读者结合文中提供的模块化代码结构自行复现实验,重点关注FA与ESN的集成逻辑、适应度函数设计以及参数优化流程,并通过实际数据集调试与验证模型效果,从而深入掌握智能优化算法在神经网络中的应用方法。
【源码免费下载链接】:https://renmaiwang.cn/s/mj7td 一个优化的SQL:下面默认以postgresql为例:1.尽量避免2.排序的数据量尽量少,并保证在内存里完成排序。(至于具体什么数据量能在内存中完成排序,不同数据库有不同的配置:oracle是sort_area_size;postgresql是work_mem(integer),单位是KB,默认值是4MB。mysql是sort_buffer_size注意:该参数对应的分配内存是每连接独占!)1.过滤的数据量比较少,一般来说<20>40%,基本不走索引(会全表扫描)2.保证值的数据类型和字段数据类型要一直。3.对索引的字段进行计算时,必须在【PostgreSQL性能优化】在PostgreSQL数据库环境中,性能优化是一个至关重要的任务,它涉及到SQL查询的效率、索引的合理使用、内存管理以及查询规划等多个方面。以下是一些关键的性能优化策略:**一、排序优化**1. 避免不必要的排序:如果业务允许,尽可能去掉ORDER BY子句,因为排序操作对性能影响显著。2. 控制排序内存:调整`work_mem`参数以确保排序可以在内存中完成,避免磁盘排序导致的性能下降。默认值为4MB,可根据实际情况调整。**二、索引优化**1. 合理使用索引:过滤数据量小于20%时,应使用索引;20%-40%之间可能走索引,超过40%则可能选择全表扫描。2. 数据类型匹配:确保索引字段的数据类型与查询条件的数据类型一致。3. 计算操作与索引:计算函数(如to_char())应用于索引字段时,应确保计算在索引列的右侧,否则索引无法被利用。4. 索引创建:为相关联的字段创建索引,提高连接查询效率。5. 复合索引:遵循最左前缀原则,确保最左边的字段在查询中出现。**三、连接查询策略**1. Hash Join:适用于大结果集,将数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值