Apr 17th 数字图像处理连载(06)

Apr 17th 数字图像处理连载(06)

标签(空格分隔): 数字图像处理 数字图像处理(冈萨雷斯)


3.3 直方图的处理

3.3.1 直方图均衡

一幅图像具有灰度级别,我们可以把灰度级别视为区间在 [0,L1] [ 0 , L − 1 ] 内的随机变量。随机变量用来描绘概率密度函数。
由概率论得到的基本结果,如果 Pr(r) P r ( r ) T(r) T ( r ) 已知,而且在感兴趣的值域上 T(r) T ( r ) 连续可微,那么变换之后的变量 s s 的概率密度函数如下:

Ps(s)=Pr(r)|drds|

这里可以看出,输出灰度变量的PDF和输入灰度的PDF和变换函数决定。在图像处理中的一个重要的变换函数是:

s=T(r)=(L1)r0Pr(w)dw s = T ( r ) = ( L − 1 ) ∫ 0 r P r ( w ) d w

这个公式的右边是随机变量 r r 的积累分布函数,这里的话,因为PDF一直是正值,那么这个积分的值就是这个概率密度函数包围的面积。又因为函数下的面积不随着r的增大而减小,这个公式的上限: r=(L1) r = ( L − 1 ) ,这个时候的积分为1,也就是PDF曲线下方的面积始终为1,所以说当时的 s s 的最大值是(L1)这里的话,是符合之前的条件的。
为了寻找讨论相应的变化 Ps(s) P s ( s ) ,由于基本积分学都莱布尼茨准则可以知道,关于上限的定积分的导数是被积函数在上限的值。

ds/dr=dT(r)/dr=(L1)/dr[r0Pr(w)dw]=(L1)Pr(r) d s / d r = d T ( r ) / d r = ( L − 1 ) / d r [ ∫ 0 r P r ( w ) d w ] = ( L − 1 ) P r ( r )

dr/ds d r / d s 结果带入后,把概率的密度值设置为正,这样子就可以得到
Ps(s)=Pr(r)drds=Pr(r)1(L1)Pr(r)=1L1 P s ( s ) = P r ( r ) | d r d s | = P r ( r ) | 1 ( L − 1 ) P r ( r ) | = 1 L − 1

其中, 0sL1 0 ≤ s ≤ L − 1
通过最后一行中的 Ps(s) P s ( s ) 中可知,这个是均匀概率密度函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值