Apr 17th 数字图像处理连载(06)
标签(空格分隔): 数字图像处理 数字图像处理(冈萨雷斯)
3.3 直方图的处理
3.3.1 直方图均衡
一幅图像具有灰度级别,我们可以把灰度级别视为区间在
[0,L−1]
[
0
,
L
−
1
]
内的随机变量。随机变量用来描绘概率密度函数。
由概率论得到的基本结果,如果
Pr(r)
P
r
(
r
)
和
T(r)
T
(
r
)
已知,而且在感兴趣的值域上
T(r)
T
(
r
)
连续可微,那么变换之后的变量
s
s
的概率密度函数如下:
这里可以看出,输出灰度变量的PDF和输入灰度的PDF和变换函数决定。在图像处理中的一个重要的变换函数是:
这个公式的右边是随机变量 r r 的积累分布函数,这里的话,因为PDF一直是正值,那么这个积分的值就是这个概率密度函数包围的面积。又因为函数下的面积不随着的增大而减小,这个公式的上限: r=(L−1) r = ( L − 1 ) ,这个时候的积分为1,也就是PDF曲线下方的面积始终为1,所以说当时的 s s 的最大值是这里的话,是符合之前的条件的。
为了寻找讨论相应的变化 Ps(s) P s ( s ) ,由于基本积分学都莱布尼茨准则可以知道,关于上限的定积分的导数是被积函数在上限的值。
把 dr/ds d r / d s 结果带入后,把概率的密度值设置为正,这样子就可以得到
其中, 0≤s≤L−1 0 ≤ s ≤ L − 1 ,
通过最后一行中的 Ps(s) P s ( s ) 中可知,这个是均匀概率密度函数。