题目:
1257: [CQOI2007]余数之和sum
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 2383 Solved: 1105
[ Submit][ Status][ Discuss]
Description
给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
Input
输入仅一行,包含两个整数n, k。
Output
输出仅一行,即j(n, k)。
Sample Input
5 3
Sample Output
7
HINT
50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9
Source
题解:根据n/i将1~n分成几组,每组的n/i值相同,n%i的值呈等差数列。
例如 当n=20,k=15时
商为15的:1;
商为7的:2;
商为5的:3;
商为3的:4,5;
商为2的:6,7;//余数等差
商为1的:8,9,10,11,12,13,14,15;//余数等差
商为0的:16,17,18,19,20;
固我们只需找出每段商相等的数字的起始和末尾,即可通过等差数列的求和公式相加得到答案。
以下为代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
int main()
{
int n,k;
scanf("%d%d",&n,&k);
LL ans=0;
int now=1;
int minn=min(n,k);
while(now<=minn)
{
int div=k/now;
int final=k/div;
ans+=((LL)(k%now+k%final)*(final-now+1)/2);
if(final>minn)
{
ans-=((LL)(k%final+k%(minn+1))*(final-minn)/2);
}
now=final+1;
}
if(n>k)
ans+=((LL)(n-k)*k);
printf("%lld\n",ans);
return 0;
}