bzoj1257[CQOI]余数之和

题目:

1257: [CQOI2007]余数之和sum

Time Limit: 5 Sec   Memory Limit: 162 MB
Submit: 2383   Solved: 1105
[ Submit][ Status][ Discuss]

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

HINT

50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9

Source

题解:
      根据n/i将1~n分成几组,每组的n/i值相同,n%i的值呈等差数列。

例如 当n=20,k=15时

 商为15的:1;

 商为7的:2;

 商为5的:3;

 商为3的:4,5;

 商为2的:6,7;//余数等差

 商为1的:8,9,10,11,12,13,14,15;//余数等差

 商为0的:16,17,18,19,20;

固我们只需找出每段商相等的数字的起始和末尾,即可通过等差数列的求和公式相加得到答案。

以下为代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#define LL long long 
using namespace std;
int main()
{
	int n,k;
	scanf("%d%d",&n,&k);
	LL ans=0;
	int now=1;
	int minn=min(n,k);
	while(now<=minn)
	{
		int div=k/now;
		int final=k/div;
		ans+=((LL)(k%now+k%final)*(final-now+1)/2);
		if(final>minn)
		{
			ans-=((LL)(k%final+k%(minn+1))*(final-minn)/2);
		}
        now=final+1;
    }
	if(n>k)
	  ans+=((LL)(n-k)*k);
	printf("%lld\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值