【BZOJ1257】余数之和,整除分块

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值

其中k mod i表示k除以i的余数。

例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

1<=n ,k<=10^9Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

思路描述:

    取模运算没有啥比较好的运算公式,故一般转化为除法运算。

    f(n, k) = k mod 1 + k mod 2 + ... + k mod n
                    = k-floor(k/1)*1 + k-floor(k/2)*2 + ... + k-floor(k/n)*n.  
                    = n * k - (floor(k/1)*1 + floor(k/2)*2 + ... + floor(k/n)*n).
    1.因为对于计算式 k / x,最多有 2 * sqrt(k) 个不同的数,所以上述括号中floor部分最多有 十万 左右个不同的结果.
           证明如下: 当 x <= sqrt(k)时,显然有不超过sqrt(K)个结果,当x > k时,显然 1 < x / k < sqrt(k),所以结论成立。
    2.所以括号部分最多被分为1e5个段,每个段中具有相同的结果。所以只要知道了每一段的首项和末项,就可以利用等差公式在十万级别内算出最终结果.
    3.每一段的末项可由如下结论得到:和 floor(k/x) 相等的最大 x 等于 floor(k/floor(k/x)). 所以代码可实现. 
        证明过程暂略。

代码实现:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

int main () {
  int n, k;
  LL sum;
  while (cin >> n >> k) {
    if (n > k) sum = (LL) (n - k) * k, n = k;
    sum += (LL) n * k;
    int p = 1;
    while (p <= n) {
      int l = p, r = k / (k / p);
      sum -= (LL) k / p * (l + r) * (r - l + 1) / 2;
      p = r + 1;
    }
    cout << sum << endl;
  }
  return 0;
}

THE END;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值