这里有一个非负整数数组 arr,你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时,你可以跳到 i + arr[i] 或者 i - arr[i]。
请你判断自己是否能够跳到对应元素值为 0 的 任意 下标处。
注意,不管是什么情况下,你都无法跳到数组之外。
示例 1:
输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 5 -> 下标 4 -> 下标 1 -> 下标 3
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3
示例 2:
输入:arr = [4,2,3,0,3,1,2], start = 0
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 0 -> 下标 4 -> 下标 1 -> 下标 3
示例 3:
输入:arr = [3,0,2,1,2], start = 2
输出:false
解释:无法到达值为 0 的下标 1 处。
提示:
1 <= arr.length <= 5 * 10^4
0 <= arr[i] < arr.length
0 <= start < arr.length
解析:根据 i + arr[i] 或者 i - arr[i],进行dfs,找到等于0就返回。
class Solution {
public boolean canReach(int[] arr, int start) {
int[] vis = new int[arr.length];
return dfs(arr,arr[start],start,vis);
}
private boolean dfs(int[] arr, int k,int start,int[] vis) {
if(k == 0) {
return true;
}
vis[start] = 1;
boolean ans = false;
if(start + k < arr.length && vis[start + k] == 0) {
ans = dfs(arr, arr[start+k], start+k, vis);
}
if(ans) return ans;//找到就返回
if(start - k >= 0 && vis[start-k] == 0) {
ans = dfs(arr, arr[start-k], start-k, vis);
}
return ans;
}
}