hadoop02-HDFS【尚硅谷】

HDFS

大数据学习笔记

一、HDFS产出背景及定义

  1. HDFS产生背景
    随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种
  2. HDFS定义
    HDFS,它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
    HDFS的使用场景适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。

优点:
1)高容错性

  • 数据自动保存多个副本。它通过增加副本的形式,提高容错性。
  • 某一个副本丢失以后,它可以自动恢复。

2) 适合处理大数据

  • 数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据
  • 文件规模:能够处理百万规模以上的文件数量,数量相当之大。
    3)可构建在廉价机器上,通过多副本机制,提高可靠性。

缺点:
1) 不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
2)无法高效的对大量小文件进行存储。

  • 存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
  • 小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
    3)不支持并发写入、文件随机修改。
  • 一个文件只能有一个写,不允许多个线程同时写;
  • 仅支持数据append(追加),不支持文件的随机修改。
  1. HDFS组成架构
    在这里插入图片描述
  1. NameNode(nn):就是Master,它是一个主管、管理者。
  • 管理HDFS的名称空间;
  • 配置副本策略;
  • 管理数据块(block)映射信息;
  • 处理客户端读写请求。
  1. DataNode(dn):就是Slave。NameNode下达命令,DataNode执行实际的操作。
  • 存储实际的数据块;
  • 执行数据块的读/写操作。
  1. Client:就是客户端。
  • 文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值