HDFS
大数据学习笔记
一、HDFS产出背景及定义
- HDFS产生背景
随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。 - HDFS定义
HDFS,它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
优点:
1)高容错性
- 数据自动保存多个副本。它通过增加副本的形式,提高容错性。
- 某一个副本丢失以后,它可以自动恢复。
2) 适合处理大数据
- 数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据
- 文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3)可构建在廉价机器上,通过多副本机制,提高可靠性。
缺点:
1) 不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
2)无法高效的对大量小文件进行存储。
- 存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
- 小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
3)不支持并发写入、文件随机修改。- 一个文件只能有一个写,不允许多个线程同时写;
- 仅支持数据append(追加),不支持文件的随机修改。
- HDFS组成架构

- NameNode(nn):就是Master,它是一个主管、管理者。
- 管理HDFS的名称空间;
- 配置副本策略;
- 管理数据块(block)映射信息;
- 处理客户端读写请求。
- DataNode(dn):就是Slave。NameNode下达命令,DataNode执行实际的操作。
- 存储实际的数据块;
- 执行数据块的读/写操作。
- Client:就是客户端。
- 文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传;

最低0.47元/天 解锁文章
3773

被折叠的 条评论
为什么被折叠?



