LeetCode数据结构基础---2021/8/25

将有序数组转换为二叉搜索树

在这里插入图片描述
分析:
  BST的中序遍历是升序的,本题要求高度平衡,因此我们需要选择升序序列的中间元素作为根节点,然后将其左边作为左子树,右边作为右子树,递归建树。
代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* dfs(vector<int>& nums, int low, int high) {
        if(low > high) {
            return NULL;
        }
        int mid = low + (high - low) / 2;
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = dfs(nums, low, mid - 1);
        root->right = dfs(nums, mid + 1, high);
        return root;
    }
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return dfs(nums, 0, nums.size() - 1);
    }
};

从前序与中序遍历序列构造二叉树

根据遍历序列递归创建二叉树

二叉树的锯齿形层序遍历

在这里插入图片描述
分析:
  简单的层序遍历,可以设置一个flag来调整每一层遍历的顺序。
代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        vector<vector<int>> res;
        queue<TreeNode*> que;
        if(root == NULL) {
            return res;
        }
        que.push(root);
        int flag = 1;
        vector<int> temp;
        while(!que.empty()) {
            int n = que.size();
            for(int i = 0; i < n; i++) {
                TreeNode* p = que.front();
                que.pop();
                temp.push_back(p->val);
                if(p->left) {
                    que.push(p->left);
                }
                if(p->right) {
                    que.push(p->right);
                }
            }
            if(flag) {
                flag = 0;
            }else {
                reverse(temp.begin(), temp.end());
                flag = 1;
            }
            res.push_back(temp);
            temp.clear();
        }
        return res;
    }
};

二叉树的右视图

在这里插入图片描述
分析:
  右侧能看到的结点就是每一层最右边结点的集合,因此可以参考上一题,使用层序遍历,然后每一层只保存最右边的结点。
代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        vector<int> res;
        queue<TreeNode*> que;
        if(root == NULL) {
            return res;
        }
        que.push(root);
        while(!que.empty()) {
            int n = que.size();
            for(int i = 0; i < n; i++) {
                TreeNode* p = que.front();
                que.pop();
                if(i == n - 1) {
                    res.push_back(p->val);   //添加每层最后一个结点
                }
                if(p->left) {
                    que.push(p->left);
                }
                if(p->right) {
                    que.push(p->right);
                }
            }
        }
        return res;
    }
};

路径总和 II

在这里插入图片描述
分析:
  简单dfs。
代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> res;
    void dfs(TreeNode* root, vector<int>& temp, int sum, int targetSum) {
        if(root == NULL) {
            return;
        }
        sum += root->val;
        temp.push_back(root->val);
        if(root->left == NULL && root->right == NULL) {
            if(sum == targetSum) {
                res.push_back(temp);
            }
        }
        dfs(root->left, temp, sum, targetSum);
        dfs(root->right, temp, sum, targetSum);
        temp.pop_back();
    }
    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
        vector<int> temp;
        dfs(root, temp, 0, targetSum);
        return res;
    }
};

删除二叉搜索树中的节点

在这里插入图片描述
在这里插入图片描述
分析:
  分为三种情况:

  1. 需要删除的是叶子结点:直接删除。
  2. 需要删除的结点右子树不为空,则该结点可以由该结点的后继结点进行替代,该后继结点位于右子树中较低的位置。然后可以从后继结点的位置递归向下操作以删除后继结点。
  3. 右子树空但是左子树不空:这意味着它的后继结点在它的上面,可以使用它的前驱结点进行替代,然后再递归的向下删除前驱结点。
    代码:
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
private:
    TreeNode* successor(TreeNode* root) {
        TreeNode* cur = root->right;
        while(cur->left) {
            cur = cur->left;
        }
        return cur;
    }

    TreeNode* predecessor(TreeNode* root) {
        TreeNode* cur = root->left;
        while (cur->right) {
            cur = cur->right;
        }
        return cur;
    }
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if(root == NULL) {
            return NULL;
        }
        if(root->val > key) {
            root->left = deleteNode(root->left, key);
        }else if(root->val < key) {
            root->right = deleteNode(root->right, key);
        }else {
            if(root->left == NULL && root->right == NULL) {
                delete root;
                root = NULL;
            }else if(root->right) {
                root->val = successor(root)->val;
                root->right = deleteNode(root->right, root->val);
            }else {
                root->val = predecessor(root)->val;
                root->left = deleteNode(root->left, root->val);
            }
        }
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值