目录
剑指Offer II 003. 前n个数字二进制中1的个数
方法一:
逐个判断。
代码:
class Solution {
public:
vector<int> countBits(int n) {
vector<int> res;
for(int i = 0; i <= n; i++) {
int div = 1, cnt = 0, t = 1;
while(t < 32) {
if(div & i) {
cnt++;
}
t++;
div <<= 1;
}
res.push_back(cnt);
}
return res;
}
};
方法二:
n & (n - 1)后,n最低位的1将变成0。
代码:
class Solution {
public:
vector<int> countBits(int n) {
vector<int> res;
for(int i = 0; i <= n; i++) {
int t = i, cnt = 0;
while(t) {
cnt++;
t &= t - 1;
}
res.push_back(cnt);
}
return res;
}
};
剑指Offer II 004. 只出现一次的数字
剑指Offer II 083. 没有重复元素集合的全排列
方法一:
c++的next_permutation()。
代码:
class Solution {
public:
vector<vector<int>> permute(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
do {
res.push_back(nums);
}while(next_permutation(nums.begin(), nums.end()));
return res;
}
};
方法二:
回溯。
代码:
class Solution {
public:
vector<vector<int>> res;
vector<int> vis;
vector<int> temp;
void dfs(int n, vector<int>& nums, vector<int>& temp) {
if(temp.size() == n) {
res.push_back(temp);
return;
}
for(int i = 0; i < nums.size(); i++) {
if(vis[i] == 0) {
vis[i] = 1;
temp.push_back(nums[i]);
dfs(n, nums, temp);
vis[i] = 0;
temp.pop_back();
}
}
}
vector<vector<int>> permute(vector<int>& nums) {
int n = nums.size();
vis = vector<int>(n);
dfs(n, nums, temp);
return res;
}
};
剑指 Offer II 005. 单词长度的最大乘积
方法一:
暴力判断,超时。
代码:
class Solution {
public:
bool check(string x, string y) {
int n = x.size(), m = y.size();
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(x[i] == y[j]) {
return false;
}
}
}
return true;
}
int maxProduct(vector<string>& words) {
//暴力循环
int res = INT_MIN;
int n = words.size();
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
if(check(words[i], words[j])) {
int temp = words[i].size() * words[j].size();
res = max(res, temp);
}
}
}
return res == INT_MIN ? 0 : res;
}
};
方法二:
将每个单词表示成一个26位的二进制数,最低位为1表示a出现过,次低位为1表示b出现过。如果两个单词相与不为0,说明两个单词中有相同字母出现。
代码:
class Solution {
public:
int maxProduct(vector<string>& words) {
int res = INT_MIN;
int n = words.size();
vector<int> f(n);
for(int i = 0; i < n; i++) {
for(char x : words[i]) {
f[i] |= (1 << (x - 'a'));
}
}
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
if((f[i] & f[j]) == 0) {
int temp = words[i].size() * words[j].size();
res = max(res, temp);
}
}
}
return res == INT_MIN ? 0 : res;
}
};
剑指Offer II 088. 爬楼梯的最少成本
分析:
动态规划:设dp[i]表示到达第i个阶梯时的花费,边界条件:dp[0] = dp[1] = 0,因为一次最多可以爬两个阶梯。转移方程:每一次可以从前一个阶梯或者前两个阶梯爬上来,取最小值即可。
代码:
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> dp(n + 1, 0);
dp[0] = dp[1] = 0;
for(int i = 2; i <= n; i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[n];
}
};