解析:这道题的解法很多
第一种解法:
我想到的,采用直接插入排序的思想
1.以j记录当前的位置,每遍历到一个元素,与已经排列好的前j-1个元素进行依次对比,直到找到和当前元素小于或者相等的位置,进行插入
2.直到遍历完最后一个元素
class Solution {
public:
void sortColors(vector<int>& nums) {
if (nums.empty() || nums.size() == 1) return;
for (int i = 1; i < nums.size(); ++i){
int j = i;
while (j > 0 && nums[j] < nums[j-1]){
swap(nums[j], nums[j-1]);
j--;
}
}
return;
}
};
第二种解法:
应该是这道题的精髓所在,采用快速排序交换元素的思想,从两边往中间夹
1.当前元素等于0,则为最小,与最左边的元素进行交换,增大左边的范围,因为左边的已经是无需重排,都是0
2.当前元素等于1,不做任何操作,因为只有3个值,1肯定是位于中间,排在前面的元素一定为0
3.当前元素等于2,则为最大,与最右边的元素进行交换,缩小右边的范围,因为右边的已经是无需重排,都是2
class Solution {
public:
void sortColors(vector<int>& nums) {
if (nums.empty() || nums.size() == 1) return;
int left = 0, right = nums.size() - 1;
int pos = left;
while (pos <= right){
if (nums[pos] == 0){
swap(nums[pos], nums[left]);
left++; //左边的范围缩小
pos++;
}
else if (nums[pos] == 1) pos++;
else{
swap(nums[pos], nums[right]);
right--; //右边的范围缩小
}
}
return;
}
};