Find Peak Element

1 解析 

这道题不难,比较简单,题目大意,寻找局部峰值

2 思路

局部峰值:nums[i-1] < nums[i] < nums[i+1]    i >= 1

因为左右两边的界限都是负无穷大,所以局部峰值一定会存在,我们只需从左边开始检测,当出现开始下降的元素时,那么该元素的上一个元素即为峰值。这种情况下,时间复杂度为O(n),而题目要求最好对数复杂度,所以我们可以采用二分的思想

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        for (int i = 1; i < nums.size(); ++i){
            if (nums[i] < nums[i-1]) return i-1; //当前元素开始下降
        }        
        return nums.size() - 1;
    }
};

 3 二分查找

用left表示左边边界,right表示右边边界,mid表示中间的位置,若中间元素mid小于下一个元素mid+1,那么在mid的右边一定会存在峰值,因为右边边界是负无穷大;反之,mid的左边一定存在峰值,因为左边的边界为负无穷大.

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int left = 0; 
        int right = nums.size() - 1;
        while (left < right){
            int mid = (left + right) / 2;
            if (nums[mid] < nums[mid + 1]) left = mid + 1; //mid右边存在极值
            else right = mid; //mid左边存在极值
        }
        return right;
    }
};

 [1]https://www.cnblogs.com/grandyang/p/4217175.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值