1 解析
这道题不难,比较简单,题目大意,寻找局部峰值
2 思路
局部峰值:nums[i-1] < nums[i] < nums[i+1] i >= 1
因为左右两边的界限都是负无穷大,所以局部峰值一定会存在,我们只需从左边开始检测,当出现开始下降的元素时,那么该元素的上一个元素即为峰值。这种情况下,时间复杂度为O(n),而题目要求最好对数复杂度,所以我们可以采用二分的思想
class Solution {
public:
int findPeakElement(vector<int>& nums) {
for (int i = 1; i < nums.size(); ++i){
if (nums[i] < nums[i-1]) return i-1; //当前元素开始下降
}
return nums.size() - 1;
}
};
3 二分查找
用left表示左边边界,right表示右边边界,mid表示中间的位置,若中间元素mid小于下一个元素mid+1,那么在mid的右边一定会存在峰值,因为右边边界是负无穷大;反之,mid的左边一定存在峰值,因为左边的边界为负无穷大.
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int left = 0;
int right = nums.size() - 1;
while (left < right){
int mid = (left + right) / 2;
if (nums[mid] < nums[mid + 1]) left = mid + 1; //mid右边存在极值
else right = mid; //mid左边存在极值
}
return right;
}
};