162. Find Peak Element

1 题目理解

输入:int[] nums并且 nums[i]!=nums[i+1]
输出:找到称为峰值的那个数字,返回其下标。
规则:峰值是指:nums[i-1]<nums[i] 并且 nums[i+1]<nums[i]。你可以认为nums[-1] = nums[n] = -∞.只要返回其中的一个峰值下标即可。

2 线性扫描

参考网址
我们可以利用nums[i-1]<nums[i],nums[i+1]<nums[i]找到峰值。当我们遇到一个数字的时候只需要判断nums[i]>nums[i+1]即可。 为什么是这样,下面分三种情况描述。

情况1,所有数字以降序排列。在这种情况下第一个元素就是峰值。我们判断nums[i]>nums[i+1],就得出结论。当然这个时候我们不需要判断nums[i-1]与nums[i]。
在这里插入图片描述

情况2:所有元素以上升序列排列。最后一个元素是峰值。在这种情况下我们会一直判断nums[i]与nums[i+1]的关系,一直不符合nums[i]>nums[i+1],所以选择最后一个元素为峰值。
在这里插入图片描述

情况3:峰值处于中间某处。当遍历上升部分的时候,与情况2相同,没有元素满足nums[i]>nums[i+1]。我们不需要比较nums[i]与上一个元素nums[i-1]的关系。当达到峰值元素时候,nums[i]>nums[i+1]满足条件,不需要判断nums[i]与上一个元素nums[i-1]的关系。由于会遍历到nums[i],就已经证明了nums[i-1]<nums[i]。某则就判断为峰值了。
在这里插入图片描述

class Solution {
    public int findPeakElement(int[] nums) {
        for(int i=1;i<nums.length;i++){
            if(nums[i]<nums[i-1]){
                return i-1;
            }
        }
        return nums.length-1;
    }
}

3 递归二分查找

二分法用于有序数数中。我们可以将一个普通数组看做是升序降序交替的数组。结果只要返回其中一个峰值即可。利用这两点,我们可以使用二分。

如果当前处理的元素处于下降子序列,那么峰值一定在这个值的左边,也可能包含这个值。如果当前处理的元素处于上升子序列,那么峰值一定在这个值的右边。因为比较的是nums[i]和nums[i+1]的关系,所以在此情况下,峰值肯定不是当前元素。

class Solution {
    public int findPeakElement(int[] nums) {
        return findPeakElement(nums,0,nums.length-1);
    }
    private int findPeakElement(int[] nums,int l,int r){
        if(l==r) return l;
        int m = l +((r-l)>>1);
        if(nums[m]>nums[m+1]){
            return findPeakElement(nums,l,m);
        }else{
            return findPeakElement(nums,m+1,r);
        }
    }
}

leetcode 852和本题分析思路一样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值