1. 解析
这道题Ugly Number II 的升级版,题目大意,求解第n个super Ugly Number,super Ugly Number(除1之外)的因子只存在因子列表primes中,换汤不换药,只是将3个因子改成了n个因子
2. 分析
最直接的做法就是利用优先队列,每次取出最小的数,然后依次和因子列表primes中的每个因子依次相乘,以产生下一个super Ugly Number,为了过滤掉已经出现过的数,将已经产生的数在hashtable中备份,每次先在hashtable中先检索产生的ugly Number是否出现过,若没有,放进队列,若已经存在,不放进队列里面。
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
priority_queue<long long, vector<long long>, greater<long long>> nums(1, 1);
map<long long, bool> exist;
while (--n > 0){
long long num = nums.top();
nums.pop();
for (auto prime: primes){
if (exist[prime*num]) continue; //若产生的数之前已经产生过,不放进队列
nums.push(prime*num);
exist[prime*num] = true;
}
}
return nums.top();
}
};
3. 动态规划法
由3个变量替换成n个元素的数组即可,详见 Ugly Number II
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes){
vector<int> counts(primes.size(), 0);
vector<int> nums(primes.size());
vector<int> res(1, 1);
while (res.size() < n){
int minNum = INT_MAX;
for (int i = 0; i < primes.size(); ++i){
nums[i] = primes[i] * res[counts[i]];
if (minNum > nums[i])
minNum = nums[i];
}
res.push_back(minNum);
for (int i = 0; i < nums.size(); ++i) if (minNum == nums[i]) counts[i]++;
}
return res.back();
}
};
4. 类似题目