【numpy】获取数组满足条件的部分

这篇博客介绍了如何利用布尔数组在numpy中过滤数组元素,创建新的数组副本而不共享内存。布尔索引能够根据条件选择数组中的特定元素,例如`arr[arr%2==1]`选取奇数。此外,`np.where`函数可以根据条件返回满足条件的元素位置。这些技术在数据处理和分析中非常实用。
摘要由CSDN通过智能技术生成

数组过滤

当使用布尔数组作为下标存取数组中的元素时,将收集数组中所有在数组中对应下标为True的元素,复制创建一个新数组。使用布尔数组作为下标获得的数组不和原始数组共享数据空间,这种方式只对应于布尔数组(array),不能使用布尔列表(list)。

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[arr % 2 == 1]
print(arr)

#输出:
# > array([ 0, 2, 4, 6, 8])

取值符中的会进行bool值转换;

arr % 2 == 1

#输出:
#array([False, True, False, True, False, True, False, True, False, True])

所以实际上会转换成用布尔数组作为下标;

arr[np.array([False, True, False, True, False, True, False,  True, False, True])]
#输出:
# array([ 0, 2, 4, 6, 8])

np.where

np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。

np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

官网链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值