Python 多线程程序的线程数限制问题及解决方案

在一个 Python 多线程应用程序中,我们希望使用多线程来并行处理大量任务。例如,我们有一个包含 44000 个元素的列表 ids,希望为每个元素创建一个线程来处理。我们使用以下代码来实现多线程:
在这里插入图片描述

import threading
import time

def parseRows(i):
    print("%d\n" % (i,))
    time.sleep(0.1)

ids = range(100)

start = time.time()
ts = list()
for i in ids:
    t = threading.Thread(target=parseRows, args=(i,))
    ts.append(t)
    t.start()
for t in ts:
    t.join()

end = time.time() - start
print('====================================================')
print('Total time : ' + str(end))

但是,当我们观察任务管理器的线程数时,却发现只有 8 到 12 个线程在运行,远低于我们期望的 44000 个线程。这显然与我们的预期不符。

2、解决方案

问题的原因在于 Python 中的全局解释器锁(GIL)。GIL 是 Python 的一个特性,它保证在同一时间只能有一个线程执行 Python 字节码。这意味着,即使我们创建了多个线程,它们也无法同时执行。

为了解决这个问题,我们可以使用以下方法:

  • 使用多进程而不是多线程: 多进程不会受到 GIL 的限制,因此可以同时执行多个进程。我们可以使用以下代码来实现多进程:
import multiprocessing
import time

def parseRows(i):
    print("%d\n" % (i,))
    time.sleep(0.1)

ids = range(100)

start = time.time()
ps = list()
for i in ids:
    p = multiprocessing.Process(target=parseRows, args=(i,))
    ps.append(p)
    p.start()
for p in ps:
    p.join()

end = time.time() - start
print('====================================================')
print('Total time : ' + str(end))
  • 使用非 GIL 实现的 Python: 有一些 Python 实现不使用 GIL,因此可以同时执行多个线程。例如,我们可以使用 PyPy 来实现多线程。

  • 使用 C 或 C++ 等其他语言实现多线程: C 和 C++ 等其他语言没有 GIL 的限制,因此可以同时执行多个线程。我们可以使用这些语言来实现多线程。

注意: 在使用这些方法时,需要考虑以下问题:

  • 多进程的启动和终止开销可能比较大,因此如果任务数量较少,使用多线程可能更合适。
  • 多进程不能共享内存,因此需要使用其他方法来进行数据交换。
  • 非 GIL 实现的 Python 可能存在一些兼容性问题。
  • 使用其他语言实现多线程需要考虑语言的学习和使用成本。

代码例子

以下是一个使用多进程来实现多线程的代码例子:

import multiprocessing
import time

def parseRows(i):
    print("%d\n" % (i,))
    time.sleep(0.1)

ids = range(100)

start = time.time()
ps = list()
for i in ids:
    p = multiprocessing.Process(target=parseRows, args=(i,))
    ps.append(p)
    p.start()
for p in ps:
    p.join()

end = time.time() - start
print('====================================================')
print('Total time : ' + str(end))

当我们运行这个程序时,我们可以看到任务管理器中的线程数已经达到了 100 个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值