在一个 Python 多线程应用程序中,我们希望使用多线程来并行处理大量任务。例如,我们有一个包含 44000 个元素的列表 ids,希望为每个元素创建一个线程来处理。我们使用以下代码来实现多线程:
import threading
import time
def parseRows(i):
print("%d\n" % (i,))
time.sleep(0.1)
ids = range(100)
start = time.time()
ts = list()
for i in ids:
t = threading.Thread(target=parseRows, args=(i,))
ts.append(t)
t.start()
for t in ts:
t.join()
end = time.time() - start
print('====================================================')
print('Total time : ' + str(end))
但是,当我们观察任务管理器的线程数时,却发现只有 8 到 12 个线程在运行,远低于我们期望的 44000 个线程。这显然与我们的预期不符。
2、解决方案
问题的原因在于 Python 中的全局解释器锁(GIL)。GIL 是 Python 的一个特性,它保证在同一时间只能有一个线程执行 Python 字节码。这意味着,即使我们创建了多个线程,它们也无法同时执行。
为了解决这个问题,我们可以使用以下方法:
- 使用多进程而不是多线程: 多进程不会受到 GIL 的限制,因此可以同时执行多个进程。我们可以使用以下代码来实现多进程:
import multiprocessing
import time
def parseRows(i):
print("%d\n" % (i,))
time.sleep(0.1)
ids = range(100)
start = time.time()
ps = list()
for i in ids:
p = multiprocessing.Process(target=parseRows, args=(i,))
ps.append(p)
p.start()
for p in ps:
p.join()
end = time.time() - start
print('====================================================')
print('Total time : ' + str(end))
-
使用非 GIL 实现的 Python: 有一些 Python 实现不使用 GIL,因此可以同时执行多个线程。例如,我们可以使用 PyPy 来实现多线程。
-
使用 C 或 C++ 等其他语言实现多线程: C 和 C++ 等其他语言没有 GIL 的限制,因此可以同时执行多个线程。我们可以使用这些语言来实现多线程。
注意: 在使用这些方法时,需要考虑以下问题:
- 多进程的启动和终止开销可能比较大,因此如果任务数量较少,使用多线程可能更合适。
- 多进程不能共享内存,因此需要使用其他方法来进行数据交换。
- 非 GIL 实现的 Python 可能存在一些兼容性问题。
- 使用其他语言实现多线程需要考虑语言的学习和使用成本。
代码例子
以下是一个使用多进程来实现多线程的代码例子:
import multiprocessing
import time
def parseRows(i):
print("%d\n" % (i,))
time.sleep(0.1)
ids = range(100)
start = time.time()
ps = list()
for i in ids:
p = multiprocessing.Process(target=parseRows, args=(i,))
ps.append(p)
p.start()
for p in ps:
p.join()
end = time.time() - start
print('====================================================')
print('Total time : ' + str(end))
当我们运行这个程序时,我们可以看到任务管理器中的线程数已经达到了 100 个。