K-Means聚类算法的实现

本文介绍了使用Python实现的距离度量函数、质心计算、k-means聚类算法流程,并展示了如何在sklearn库中使用KMeans进行聚类。主要内容包括样本间的曼哈顿和欧氏距离计算,质心定义,以及Kmeans类的详细步骤和sklearn中的简化应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关 距离度量

#encoding=utf8    
import numpy as np

def distance(x,y,p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    ''' 
    #********* Begin *********#
    dis2 = np.sum(np.abs(x-y)**p)
    dis = np.power(dis2,1/p)
    return dis
    #********* End *********#

第2关 什么是质心

#encoding=utf8
import numpy as np
#计算样本间距离
def distance(x, y, p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    '''
    #********* Begin *********#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿拉保

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值