The more, The Better
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9591 Accepted Submission(s): 5569
Problem Description
ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物。但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其他某一个特定的城堡。你能帮ACboy算出要获得尽量多的宝物应该攻克哪M个城堡吗?
Input
每个测试实例首先包括2个整数,N,M.(1 <= M <= N <= 200);在接下来的N行里,每行包括2个整数,a,b. 在第 i 行,a 代表要攻克第 i 个城堡必须先攻克第 a 个城堡,如果 a = 0 则代表可以直接攻克第 i 个城堡。b 代表第 i 个城堡的宝物数量, b >= 0。当N = 0, M = 0输入结束。
Output
对于每个测试实例,输出一个整数,代表ACboy攻克M个城堡所获得的最多宝物的数量。
Sample Input
3 2
0 1
0 2
0 3
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
0 0
Sample Output
5
13
分析:
相当于给了一个森林,然后我们利用题目中的0作为虚根,锵锵锵——一个完整的树。记得容量+1,多了必选的0嘛。
一开始被转左儿子右兄弟的二叉树绕晕了,觉得这个做法并不是很方便很精妙,但貌似是优化了空间的。
从根节点开始记忆化深搜,遍历当前节点的孩子们,先dfs孩子子树,然后对孩子们相当于01背包遍历,容量从大到小,分给当前孩子节点的k从小到大,但k不能等于j,因为必须选取当前节点,才能挑选它的孩子们这样子,还需多多感受一下,脑子还不是很清晰hiahiahia。
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=200;
int n,m;
int a,b[maxn+10];
int dp[maxn+10][maxn+10],vst[maxn+10][maxn+10];
vector <int> son[maxn+10];
void dfs(int a)
{
int l=son[a].size(),s=0;
for(int i=0;i<l;++i){
dfs(son[a][i]);
for(int j=m;j>1;--j){
for(int k=1;k<j;++k){//因为如果当前点不选择的话后面是继续选择的所以k!=j
dp[a][j]=max(dp[a][j],dp[a][j-k]+dp[son[a][i]][k]);
}//dp[a][j-k]是还没考虑过son[a][i]的,所以不会重复
}//倒着来不重复这样子?!
}//其实就是对节点a的孩子们跑一遍01背包
}
int main()
{
while(~scanf("%d%d",&n,&m)){
if(!n&&!m)
break;
memset(dp,0,sizeof(dp));
for(int i=0;i<=maxn;++i){
son[i].clear();
}
for(int i=1;i<=n;++i){
scanf("%d%d",&a,&b[i]);
dp[i][1]=b[i];
son[a].push_back(i);
}
++m;//惊了!因为有0多取一个虚根
dfs(0);
printf("%d\n",dp[0][m]);
}
return 0;
}