贪心&二分 CodeForces999D 贪心&二分&set

D. Equalize the Remainders

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array consisting of nn integers a1,a2,…,ana1,a2,…,an, and a positive integer mm. It is guaranteed that mm is a divisor of nn.

In a single move, you can choose any position ii between 11 and nn and increase aiai by 11.

Let's calculate crcr (0≤r≤m−1)0≤r≤m−1) — the number of elements having remainder rr when divided by mm. In other words, for each remainder, let's find the number of corresponding elements in aa with that remainder.

Your task is to change the array in such a way that c0=c1=⋯=cm−1=nmc0=c1=⋯=cm−1=nm.

Find the minimum number of moves to satisfy the above requirement.

Input

The first line of input contains two integers nn and mm (1≤n≤2⋅105,1≤m≤n1≤n≤2⋅105,1≤m≤n). It is guaranteed that mm is a divisor of nn.

The second line of input contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤1090≤ai≤109), the elements of the array.

Output

In the first line, print a single integer — the minimum number of moves required to satisfy the following condition: for each remainder from 00to m−1m−1, the number of elements of the array having this remainder equals nmnm.

In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed 10181018.

Examples

input

Copy

6 3
3 2 0 6 10 12

output

Copy

3
3 2 0 7 10 14 

input

Copy

4 2
0 1 2 3

output

Copy

0
0 1 2 3 

 

题意:

有数a[1]-a[n],有m是n的因子,每+1算1步,让c[r],r即a[i]%m,作为a数组每个数%m余r的个数,使得c[0]=……=c[m-1]=n/m至少需要几步。

 

嘤首先要看出来这是贪心。

贪心的思想是遍历过程中,如果a[[i]%m=r,且c[r]未达n/m,不需要+1,计入;否则,找到最近的未满的r加至那里。其正确性可以模拟一下,没有任何问题;如果不选择最近的数而是+1之类的,后面的再补上来,步数只会>=这种方案。

一开始直接只是贪心暴力写,T了。

然后就用set做二分:

将计够n/m的余数都放在set集合中,计数结束就从集合中删除,查找最近的未满余数时,用lower_bound做二分,记得特判如果是最大的(s.rbegin())就找最前面的这样子。

另外数据范围,开int是会wa的emmm

 

#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>
using namespace std;

const int maxn=2e5+20;
const int maxm=1e5+20;

int main()
{
	int n,m;
	long long a[maxn],r,x;
	long long c[maxn];	//为什么数据范围都要开这么大啊啊啊啊
	long long ans=0;
	set <long long> s;

	memset(c,0,sizeof(c));
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;++i)
		s.insert(i);
	for(int i=1;i<=n;++i){
		scanf("%lld",&a[i]);
		if(m==1) continue;
		r=a[i]%m;
		if(r>*s.rbegin())
			x=*s.begin();
		else
			x=*s.lower_bound(r);//lower_bound(s.begin(),s.end(),r);
		if(++c[x]==n/m)
			s.erase(x);
		ans+=(x-r+m)%m;
		a[i]+=(x-r+m)%m;
	}
	printf("%lld\n",ans);
	for(int i=1;i<=n;++i)
		printf("%lld ",a[i]);

	return 0;
}

 

### 关于Codeforces Round 918的信息 对于Codeforces平台上的比赛,特别是Round 918的具体题目及其解析,在提供的参考资料中并未直接提及此轮次的比赛详情[^1]。然而,通常情况下,Codeforces的每一轮比赛都包含了不同难度级别的若干编程挑战题。 #### 比赛概述 一般而言,Codeforces的比赛分为多个等级,面向不同程度的参赛者提供适合其水平的任务。Div.2级别赛事主要针对相对初级至中级技能水平的竞争程序员设计。这类比赛中常见的问题类型涵盖了数据结构、算法优化以及复杂度分析等方面的知识点。 #### 题目特点 虽然无法给出确切的Round 918中的具体题目描述,但从以往的经验来看,该类别的竞赛往往涉及但不限于以下几种类型的题目: - **字符串处理**:涉及到模式匹配、子串查询等问题。 - **动态规划**:解决具有重叠子问题特性的最优化问题。 - **图论基础**:如最短路径计算、连通性检测等基本概念的应用。 - **贪心策略**:利用局部最优解逐步构建全局最佳方案的方法。 为了获得关于Codeforces Round 918更精确的内容,建议访问官方网站查看对应日期的历史记录页面或查阅其他社区成员分享的心得体会帖子以获取详细的题目说明和解答思路。 ```python # 示例代码用于展示如何模拟查找特定比赛信息的过程 def find_contest_info(contest_id): url = f&quot;https://codeforces.com/contest/{contest_id}&quot; try: response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, &#39;html.parser&#39;) problem_set = [] for item in soup.select(&#39;.problemindexholder&#39;): title = item.find(&#39;div&#39;, class_=&#39;title&#39;).text.strip() content = item.find(&#39;div&#39;, class_=&#39;input-specification&#39;).get_text(separator=&#39;\n&#39;, strip=True) problem_set.append((title, content)) return problem_set else: raise Exception(f&quot;Failed to fetch data from {url}&quot;) except Exception as e: print(e) find_contest_info(918) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值