贪心&二分 CodeForces999D 贪心&二分&set

9 篇文章 0 订阅
9 篇文章 0 订阅

D. Equalize the Remainders

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array consisting of nn integers a1,a2,…,ana1,a2,…,an, and a positive integer mm. It is guaranteed that mm is a divisor of nn.

In a single move, you can choose any position ii between 11 and nn and increase aiai by 11.

Let's calculate crcr (0≤r≤m−1)0≤r≤m−1) — the number of elements having remainder rr when divided by mm. In other words, for each remainder, let's find the number of corresponding elements in aa with that remainder.

Your task is to change the array in such a way that c0=c1=⋯=cm−1=nmc0=c1=⋯=cm−1=nm.

Find the minimum number of moves to satisfy the above requirement.

Input

The first line of input contains two integers nn and mm (1≤n≤2⋅105,1≤m≤n1≤n≤2⋅105,1≤m≤n). It is guaranteed that mm is a divisor of nn.

The second line of input contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤1090≤ai≤109), the elements of the array.

Output

In the first line, print a single integer — the minimum number of moves required to satisfy the following condition: for each remainder from 00to m−1m−1, the number of elements of the array having this remainder equals nmnm.

In the second line, print any array satisfying the condition and can be obtained from the given array with the minimum number of moves. The values of the elements of the resulting array must not exceed 10181018.

Examples

input

Copy

6 3
3 2 0 6 10 12

output

Copy

3
3 2 0 7 10 14 

input

Copy

4 2
0 1 2 3

output

Copy

0
0 1 2 3 

 

题意:

有数a[1]-a[n],有m是n的因子,每+1算1步,让c[r],r即a[i]%m,作为a数组每个数%m余r的个数,使得c[0]=……=c[m-1]=n/m至少需要几步。

 

嘤首先要看出来这是贪心。

贪心的思想是遍历过程中,如果a[[i]%m=r,且c[r]未达n/m,不需要+1,计入;否则,找到最近的未满的r加至那里。其正确性可以模拟一下,没有任何问题;如果不选择最近的数而是+1之类的,后面的再补上来,步数只会>=这种方案。

一开始直接只是贪心暴力写,T了。

然后就用set做二分:

将计够n/m的余数都放在set集合中,计数结束就从集合中删除,查找最近的未满余数时,用lower_bound做二分,记得特判如果是最大的(s.rbegin())就找最前面的这样子。

另外数据范围,开int是会wa的emmm

 

#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>
using namespace std;

const int maxn=2e5+20;
const int maxm=1e5+20;

int main()
{
	int n,m;
	long long a[maxn],r,x;
	long long c[maxn];	//为什么数据范围都要开这么大啊啊啊啊
	long long ans=0;
	set <long long> s;

	memset(c,0,sizeof(c));
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;++i)
		s.insert(i);
	for(int i=1;i<=n;++i){
		scanf("%lld",&a[i]);
		if(m==1) continue;
		r=a[i]%m;
		if(r>*s.rbegin())
			x=*s.begin();
		else
			x=*s.lower_bound(r);//lower_bound(s.begin(),s.end(),r);
		if(++c[x]==n/m)
			s.erase(x);
		ans+=(x-r+m)%m;
		a[i]+=(x-r+m)%m;
	}
	printf("%lld\n",ans);
	for(int i=1;i<=n;++i)
		printf("%lld ",a[i]);

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值