AI 学习时代:大语言模型领域的行业术语解析

近年来,深度学习技术的快速发展带动了大语言模型在自然语言处理领域的广泛应用。在这个激动人心的领域里,我们常常会遇到一些行业黑话和专业术语。为了帮助大家更好地入门,让我们深入探讨一些关键概念,以及它们在大型语言模型开发中的作用。掌握这些术语可以帮助我们更好地理解、开发和应用人工智能模型,提高我们在实际问题中的解决能力和效率。
在这里插入图片描述

LLM(大语言模型)

定义: 大语言模型(Large Language Models,LLMs)是指具有大规模参数量和丰富语言知识的预训练语言模型。这些模型通常包含数十亿到数百亿个参数,并在大规模文本语料库上进行了预训练,以学习和编码丰富的语言知识。这些模型因其巨大的规模和出色的性能而被称为“大型语言模型”。

示例: GPT-3(Generative Pre-trained Transformer 3):GPT-3 是由 OpenAI 发布的一种大型语言模型,拥有1750亿个参数。 假设每个参数使用 4 个字节来存储(32 位浮点数),那么 GPT-3 的参数总量为:

1750亿个参数 * 4 字节/参数 = 7000亿字节

转换为更常见的单位,即:

7000亿字节 = 7000 GB = 7 TB

Prompt(提示)

定义: Prompt是用户提供给模型的输入,用于引导模型生成相应的输出。这可以是一个问题、一个任务描述,或是任何能够启发模型产生有意义回应的信息。

示例: 如果你向一个大型语言模型提供的Prompt是 “Translate the following English text to French: ‘Hello, how are you?’”,模型的任务将是将这句话翻译成法语。

在实践中,设计有效的 Prompt 是一个关键的挑战,它需要考虑到任务的性质、用户需求以及模型的特点和能力。一个好的 Prompt 可以大大提高模型的性能和生成文本的质量。

Embedding(嵌入)

定义: Embedding是将离散型输入映射到连续向量空间的技术,常用于表示单词或 token。模型在处理文本时将每个单词表示为一个数字向量, 这样的表示方式使得模型可以更好地理解单词之间的关系,比如它们的语义和语法。

**示例:**假设我们有一个预训练的语言模型,我们想要了解它如何表示一些常见单词,比如 “apple”(苹果),“banana”(香蕉)和 “orange”(橙子)。

在该模型中,每个单词都会被表示为一个具有多个数字的向量。例如,我们可以得到以下表示:

  • "apple"的嵌入向量:[0.5, -0.3, 0.8]
  • "banana"的嵌入向量:[0.2, 0.7, -0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值