论文阅读笔记:Recent Advances and Challenges in Task-oriented Dialog Systems

提示:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处。


前言

标题:Recent Advances and Challenges in Task-oriented Dialog Systems
原文链接:Link
Github:NLP相关Paper笔记和实现
说明:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处,引用之处如有侵权,烦请告知删除。
转载请注明:DengBoCong

Abstract

由于在人机交互和自然语言处理中的重要性和价值,面向任务的对话系统在学术界和工业界都受到越来越多的关注。在本文中,我们调查了面向任务的对话系统的最新进展和挑战。我们还讨论了面向任务的对话系统的三个关键主题:(1)提高数据效率以促进在资源匮乏的环境中进行对话建模;(2)为对话策略学习建模多回合模型以实现更好的任务完成性能;(3)将领域本体知识整合到对话模型中。此外,我们回顾了对话评估和一些常用语料库的最新进展。我们认为,尽管这项调查不完整,但可以为面向任务的对话系统的未来研究提供启发。

Introduction

通常,面向任务的对话系统是建立在结构化本体之上的,该本体定义了任务的领域知识。有关面向任务的对话系统的现有研究可以大致分为两类:pipeline和end-to-end。建立pipeline系统通常需要大规模的标记对话数据来训练每个组件,模块化的结构使系统比端到端的系统更具解释性和稳定性,因此,大多数现实世界的商业系统都是以这种方式构建的。而端到端的结构像是黑匣子,这更加不可控。如下图所示,对于pipeline和end-to-end方法中的每个单独组件,我们列出了一些关键问题,在这些问题中提出了典型的作品。
在这里插入图片描述
在pipeline方法中,最近的研究更多地集中在对话框状态跟踪和对话框策略组件上,这也称为“对话框管理”。基于域本体,通过预测每个槽的值,DST任务可以视为分类任务(受限制与训练数据,OOV问题),对话策略学习任务通常被认为是强化学习任务。然而,与其他众所周知的RL任务不同,对话策略的训练需要真实的人作为环境,这是非常昂贵的。面向任务的对话系统中的三个关键问题:

  • 数据效率:资源匮乏的问题是主要的挑战之一。
  • 多回合策略:提出了许多解决方案以解决多轮交互式训练中的这些问题,以更好地进行策略学习,包括基于模型的计划,奖励估计和端到端策略学习。
  • 本体整合:面向任务的对话系统必须查询知识库(KB)以检索一些实体以生成响应,由于没有显式的状态表示形式,因此这种简化使构造查询变得困难。

Modules and Approaches

有关面向任务的对话系统的现有研究可以大致分为两类:pipeline和end-to-end。在pipeline方法中,该模型通常由几个组件组成,包括自然语言理解(NLU),对话状态跟踪(DST),对话策略和自然语言生成(NLG),如下图所示:
在这里插入图片描述
值得注意的是,尽管NLU-DST-Policy-NLG框架是pipeline系统的典型配置,但还有其他一些配置。有一些研究合并了一些典型的组件,例如单词级DST和单词级策略。在端到端方法中,对话系统在端到端方式,无需指定每个单独的组件。

  • NLU:主要是识别对话动作,其由意图和插槽值组成,即由意图识别和槽值提取组成,示例如下。

在这里插入图片描述

  • DST:对话状态跟踪器通过将整个对话上下文作为输入来估算每个时间步的用户目标。在时间 t t t 的对话状态可以看作是直到 t t t 之前的对话回合的抽象表示。
  • 对话策略:以对话状态为条件,对话策略会产生下一个系统动作。如下图所示,在特定的时间步 t t t 处,用户在 a t a_t at 处执行操作,收到奖励 R t R_t Rt,状态更新为 S t S_t St
    在这里插入图片描述
  • NLG:该任务将对话用作输入并生成自然语言响应。为了改善用户体验,所产生的话语应该(1)充分传达对话行为的语义以完成任务,并且(2)与人类语言类似,是自然的,特定的,信息丰富的。
  • End-to-end方法:面向任务的对话系统的端到端方法受到开放域对话系统研究的启发,如下图。
    在这里插入图片描述

Evaluation

大多数评估研究都遵循PARADISE框架,一种是对话成本,它衡量对话中产生的成本,例如对话回合数。另一个是任务成功,评估系统是否成功解决了用户问题。评估面向任务的对话系统的方法可以大致分为以下三种:

  • Automatic Evaluation
  • Simulated Evaluation
  • Human Evaluation

Corpora

收集了具有不同域和注释粒度的大量语料库,以促进对面向任务的对话系统的研究。如下图所示:

  • informable slot 一般是由用户告知系统的,用来约束对话的一些条件,系统为了完成任务必须满足这些约束。
  • requestable slot 一般是用户向系统咨询的,可以来做选择的一些slot。

在这里插入图片描述

Challenges

  • 数据效率:资源匮乏的问题是主要的挑战之一。回顾了为缓解此问题而提出的一些最新方法。我们首先回顾一下迁移学习方法,这些方法可以从大规模数据中获取先验知识,或者从其他任务中采用经过训练的模型。然后,我们介绍了一些无监督的方法,这些方法可以通过启发式规则在资源很少的情况下直接学习而几乎没有注释。此外,我们还回顾了最近在构建数据驱动的用户模拟器方面的工作。
  • 多回合策略:提出了许多解决方案以解决多轮交互式训练中的这些问题,以更好地进行策略学习,包括基于模型的计划,奖励估计和端到端策略学习。面向任务的对话系统的对话管理的最新研究主要集中在以下主题上:(1)带有带有用于自由槽位的值解码器的DST;(2)进行对话计划以提高策略学习中的样本效率(3)用户目标估计,以预测任务成功和用户满意度。
  • 本体整合:面向任务的对话系统必须查询知识库(KB)以检索一些实体以生成响应,由于没有显式的状态表示形式,因此这种简化使构造查询变得困难。我们介绍有关(1)对话任务模式集成(2)面向任务的对话模型中的知识库集成的一些最新进展。

Discussion and Future Trends

在本文中,我们回顾了面向任务的对话系统的最新进展,并讨论了三个关键主题:数据效率、多回合策略、本体知识整合。最后,我们讨论面向任务的对话系统的一些未来趋势:

  • 对话系统的预训练方法
  • 领域适应,跨领域应用
  • 鲁棒性
  • End-to-end模型
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度多模态学习是一种研究方法,它将多个模态(例如语音、图像、视频等)的信息进行融合和学习。近年来,深度多模态学习取得了许多重要进展和趋势。 在多模态学习中,深度神经网络在特征提取和模态融合方面发挥了重要作用。通过深度网络的层次处理,可以有效地从原始模态数据中提取出高层次的语义特征。同时,多模态数据的融合也成为研究热点。不同模态之间的关联信息可以通过深度多模态网络进行学习和利用,提高了模的性能。 近年来,深度多模态学习在不同领域取得了一系列重要的研究成果。在自然语言处理领域,多模态问答系统、图像字幕生成和视觉问答等任务得到了广泛研究。在计算机视觉领域,通过融合多个模态的信息,如图像和语音,可以实现更准确的物体识别和行为分析。在语音识别和语音合成领域,多模态学习也被用来提高语音处理的性能。 同时,一些趋势也值得关注。首先,多模态学习的应用正在不断扩展到更多领域,如医疗、机器人和智能交通等。其次,深度多模态学习和其他深度学习技术的结合也被广泛研究,以提高模的性能和泛化能力。此外,深度多模态学习在大规模数据和计算资源方面的需求也值得关注。 总之,深度多模态学习是一个充满潜力和挑战的研究方向。随着技术的不断发展和应用需求的增加,我们有理由相信,深度多模态学习将在未来发挥更重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值