AcWing 4968. 互质数的个数

    关于质数,我们常遇到的由分解质因数、质数筛、欧拉函数等。虽然质数的因子的特殊和位置的随机性,但时间复杂度大概还能控制在O(n)左右,正好符合$1 \le a \le 10^9$的取值要求。同时观察b的取值范围为$ 1 \le b \le 10^{18} $,且题目中明确提示了乘方,不难想到快速幂。

    所以本题思路即为欧拉函数 + 快速幂,由于要取模无法在求欧拉函数前把快速幂求出来,所以巧妙改为$phi(a) \times a^{b - 1}$。由于质因数相同,先求a的欧拉函数,再乘以$a^{b-1}$即可。

    注意,当a = 1 时,由条件的$1 \le x < a^{b}$,发现此情况下答案为零,要特判。

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10, MOD = 998244353;

LL a, b;
int p[N], n;

void divide(LL x)
{
    for (int i = 2; i <= x / i; ++ i)
        if (x % i == 0)
        {
            p[++ n] = i;
            while (x % i == 0) x /= i; 
        }
    if (x > 1) p[++ n] = x;
}

LL phi(int x)
{
    int ans = x;
    for (int i = 1; i <= n; ++ i)
        ans = ans / p[i] * (p[i] - 1) % MOD;
    return ans;
}

LL qmi(LL a, LL b)
{
    LL ans = 1;
    while (b)
    {
        if (b & 1) ans = (ans % MOD) * (a % MOD) % MOD;
        b >>= 1;
        a = (a % MOD) * (a % MOD) % MOD;
    }
    return ans;
}

int main()
{
    scanf("%lld%lld", &a, &b);
    
    divide(a);
    LL ans = phi(a) % MOD * qmi(a, b - 1) % MOD;
    
    if (a == 1) puts("0");
    else cout << ans << endl;
    
    return 0;
}

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值