poj2186

题意:给出一个有向图,求一共有多少个点,满足这样的条件,所有其它的点都可以到达这个点。

分析:强连通分支+缩点,然后统计每个强连通分支的出度,如果只有一个为0,则输出其内部点的个数,如果有多个为0,说明没有答案。

就是最基本的强连通模板而已

#include<iostream>
#include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAX_N=50005;
int V;
int N,M;
vector<int> G[MAX_N];
vector<int> rG[MAX_N];
vector<int> vs;
bool used[MAX_N];
int cmp[MAX_N];
void add_edge(int form,int to)
{
    G[form].push_back(to);
    rG[to].push_back(form);
}
void dfs(int v)
{
    used[v]=true;
    for(int i;i<G[v].size();i++)
    {
        if(!used[G[v][i]]) dfs(G[v][i]);
    }
    vs.push_back(v);
}
void rdfs(int v,int k)
{
    used[v]=true;
    cmp[v]=k;
    for(int i=0;i<rG[v].size();i++)
    {
        if(!used[rG[v][i]]) rdfs(rG[v][i],k);
    }

}
int scc()
{
    memset(used,0,sizeof(used));
    vs.clear();
    for(int v=0;v<V;v++)
    {
        if(!used[v]) dfs(v);
    }
    memset(used,0,sizeof(used));
    int k=0;
    for(int i=vs.size()-1;i>=0;i--)
    {
        if(!used[vs[i]]) rdfs(vs[i],k++);
    }
    return k;
}
int main()
{
    while(~(scanf("%d",&N)))
    {
        cin>>M;
        int A[MAX_N],B[MAX_N];
        for(int i=0;i<M;i++)
            cin>>A[i]>>B[i];
        V=N;
        for(int i=0;i<M;i++)
        {
            add_edge(A[i]-1,B[i]-1);
        }
        int n=scc();
        int u=0,num=0;
        for(int v=0;v<V;v++)
        {
            if(cmp[v]==n-1)
            {
            u=v;
            num++;
            }
        }
        memset(used,0,sizeof(used));
        rdfs(u,0);
        for(int v=0;v<V;v++)
        {
            if(!used[v])
            {
                num=0;
                break;
            }
        } 
        cout<<num<<endl;
        for(int i=0;i<N;i++)
        {
            G[i].clear();
            rG[i].clear();
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值