题意:给出一个有向图,求一共有多少个点,满足这样的条件,所有其它的点都可以到达这个点。
分析:强连通分支+缩点,然后统计每个强连通分支的出度,如果只有一个为0,则输出其内部点的个数,如果有多个为0,说明没有答案。
就是最基本的强连通模板而已
#include<iostream>
#include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAX_N=50005;
int V;
int N,M;
vector<int> G[MAX_N];
vector<int> rG[MAX_N];
vector<int> vs;
bool used[MAX_N];
int cmp[MAX_N];
void add_edge(int form,int to)
{
G[form].push_back(to);
rG[to].push_back(form);
}
void dfs(int v)
{
used[v]=true;
for(int i;i<G[v].size();i++)
{
if(!used[G[v][i]]) dfs(G[v][i]);
}
vs.push_back(v);
}
void rdfs(int v,int k)
{
used[v]=true;
cmp[v]=k;
for(int i=0;i<rG[v].size();i++)
{
if(!used[rG[v][i]]) rdfs(rG[v][i],k);
}
}
int scc()
{
memset(used,0,sizeof(used));
vs.clear();
for(int v=0;v<V;v++)
{
if(!used[v]) dfs(v);
}
memset(used,0,sizeof(used));
int k=0;
for(int i=vs.size()-1;i>=0;i--)
{
if(!used[vs[i]]) rdfs(vs[i],k++);
}
return k;
}
int main()
{
while(~(scanf("%d",&N)))
{
cin>>M;
int A[MAX_N],B[MAX_N];
for(int i=0;i<M;i++)
cin>>A[i]>>B[i];
V=N;
for(int i=0;i<M;i++)
{
add_edge(A[i]-1,B[i]-1);
}
int n=scc();
int u=0,num=0;
for(int v=0;v<V;v++)
{
if(cmp[v]==n-1)
{
u=v;
num++;
}
}
memset(used,0,sizeof(used));
rdfs(u,0);
for(int v=0;v<V;v++)
{
if(!used[v])
{
num=0;
break;
}
}
cout<<num<<endl;
for(int i=0;i<N;i++)
{
G[i].clear();
rG[i].clear();
}
}
return 0;
}