每天一篇论文——《Towards More Faithful Natural Language Explanation Using Multi-Level Contrastive L》

目录

📘论文读后报告

一、论文基本信息

二、研究背景与问题定义

三、主要贡献

四、模型设计详解

1️⃣ Vision-Language 模型部分

2️⃣ Multi-Level Contrastive Learning(多级对比学习)

五、实验设计与结果分析

✅ 数据集

✅ 自动评估指标

✅ 人工评估(Human Evaluation)

📈 实验结果摘要

六、消融实验分析

七、案例研究(Case Study)

八、总结与评价

✨亮点:

📌不足与展望:


📘论文读后报告

一、论文基本信息

  • 题目:Towards More Faithful Natural Language Explanation Using Multi-Level Contrastive Learning in VQA

  • 作者:Chengen Lai, Shengli Song, Shiqi Meng, Jingyang Li, Sitong Yan, Guangneng Hu

  • 机构:西安电子科技大学计算机学院


二、研究背景与问题定义

        视觉问答(Visual Question Answering, VQA)系统近年来取得长足发展,但仍存在一个核心问题:缺乏可解释性。为增强用户对系统的信任,研究者提出VQA-NLE(Visual Question Answering with Natural Language Explanation),即通过自然语言生成解释,帮助用户理解模型的推理过程。

然而,现有VQA-NLE方法存在三类关键问题,严重影响解释的“可信度”(faithfulness):

  1. 推理不完备(Deductive Unsatisfiability):解释无法逻辑上导出答案;

  2. 事实不一致(Factual Inconsistency):忽视图像真实信息,解释与事实不符;

  3. 语义扰动不敏感(Semantic Perturbation Insensitivity):小幅语义改变下模型仍输出相同解释。


三、主要贡献

        本文提出一种新颖的多级对比学习解释框架(MCLE),以自监督方式提升VQA解释的可信度。其主要贡献如下:

  • 📌 提出MCLE架构:结合语义级、图像级、实例级对比学习,捕捉多层次语义一致性,改善逻辑错误。

  • 📌 引入链式思维生成(Chain-of-Thought, COT)策略:使模型先生成解释,再推理答案,提高决策透明度。

  • 📌 性能突破:在两个主流数据集VQA-X和A-OKVQA上,MCLE均超越现有方法,表现出色。


四、模型设计详解

1️⃣ Vision-Language 模型部分

        MCLE基于GPT-2和CLIP构建视觉语言模型,采用链式思维生成(COT),模型输入为图像+问题,输出为“because...解释 + so the answer is...答案”的合成句式,增强解释与答案的逻辑联系。

2️⃣ Multi-Level Contrastive Learning(多级对比学习)

包含三大模块:

  • SemanticCL:在解释与答案之间构建对比,促进逻辑推理的合理性;

  • ImageCL:对比图像与解释,避免模型产生与图像不符的解释;

  • InstanceCL:对比语义细粒度扰动下的样本,引导模型敏感感知图像和问题中的关键变化。


五、实验设计与结果分析

✅ 数据集

  • VQA-X:基于VQA数据集构建,带人工注释解释;

  • A-OKVQA:基于COCO图像,强调常识推理能力。

✅ 自动评估指标

包括 BLEU-4, METEOR, ROUGE-L, CIDEr, SPICE 等文本生成质量指标及答案准确率(Acc)。

✅ 人工评估(Human Evaluation)

采用4分制评估解释逻辑性,并标注错误原因(如三类逻辑问题)。

📈 实验结果摘要

  • MCLE在两个数据集上全面领先:CIDEr/ROUGE/SPICE等得分比NLX-GPT提升1.4%~2.4%;

  • 人评得分显著提高:在VQA-X中比SOTA方法S3C提升了2.1~3.4分;

  • 三类逻辑错误率显著下降

    • 推理错误减少1.8%

    • 事实不符减少1.6%

    • 语义不敏感减少0.4%


六、消融实验分析

        通过去除关键模块(如SemanticCL、ImageCL、InstanceCL与COT),逐一验证其对性能的贡献:

  • 去掉COT:CIDEr下降1.2%,说明链式思维对提升逻辑性极为关键;

  • 去掉SemanticCL:SPICE下降1.6%,说明语义一致性对解释可信度重要;

  • 去掉ImageCL和InstanceCL:解释与图像不符问题显著增多。


七、案例研究(Case Study)

例如文中如图3所示,MCLE相比其子模型更能生成符合图像事实且逻辑自洽的解释。例如:

  • 问题:“树光秃吗?”

    • GT答案:“不”,解释:“有绿叶”

    • MCLE结果完美匹配,变体模型则因缺少关键组件出现事实错误或逻辑矛盾。


八、总结与评价

        本论文提出的MCLE方法通过链式生成策略 + 多级对比学习机制,有效提升VQA系统中自然语言解释的“可信度”和“逻辑一致性”,在多个维度上超越现有最优方法,具有重要研究与工程应用价值。

✨亮点:

  • 全新问题建模视角:用链式生成而非后验解释;

  • 多级对比学习设计巧妙,语义图像实例全覆盖;

  • 自动与人工评价结果双重佐证,验证充分。

📌不足与展望:

  • 当前仅支持英文VQA-NLE,未来可扩展到多语言;

  • COT和多级CL的训练成本较高,适配轻量模型值得研究;

  • 可引入强化学习或人类反馈机制优化解释生成质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WenJGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值