AI绘画新风口!Stable Diffusion保姆级实战:小白也能接单的完整指南(2025最新)

本教程没有难懂的理论,全是实操的截图,非常通俗易懂。

能够帮你在最短的时间里,掌握Stable Diffusion的核心操作方法。真正有效地提高工作的效率。

教程主要是讲我们在工作中高频使用的4个功能模块:文生图、图生图、后期处理和标签器。如下图:

图片

希望对你有所启发。


目录**:**‍

\1. Stable Diffusion 高效工作流程

\2. 大模型、外挂VAE模型、LORA模型、CLIP终止层数

\3. 提示词‍

\4. 采样迭代步数

\5. 采样器‍

6.【重要】Controlnet

\7. 放大功能

\8. CFG scale(提示图相关性/提示词引导系统)

\9. CFG scale和采样器的关系‍

\10. Seed值

\11. 标签器‍


1. Stable Diffusion 高效工作流程

1.1 创意阶段**:**

效率高:【草图 + ControlNet + 提示词】这个方法出图的确定性高,但要一定的美术基础。

效率高:【网图 + ControlNet + 提示词】根据需求找一些合适的网图,再用SD生图。

效率高:【复制C站的图片信息】这个方法比较省事,但是不太好找到和需求接近的图。

效率低:【提示词】这个方法比较费时间,要不断地调整提示词去跑图抽盲盒。

1.2 深入阶段**:**

效率高:【PS修型 + 局部重绘】这个方法出图的确定性高,但要一定的美术基础。

效率低:【提示词 + 局部重绘】这个方法比较费时间,要不断地跑图抽盲盒。

1.3 最后整理、交付阶段**:**

效率高:【后期处理】确定性最高,1:1放大原图。

效率低:【高分辨率修复(Hires.fix)】需要调参数,比较费时间。

效率低:【SD脚本放大功能(SD upscale)】需要调参数,比较费时间。


**
**

2 大模型、外挂VAE模型、LORA模型、CLIP终止层数

图片

**
**

2.1 *大模型*

大模型决定渲出来的风格。

用素材+SD底模(如SD1.5/SD1.4/SD2.1),深度学习之后炼制出的大模型,可以直接用来生图。

大模型决定了最终出图的大方向 。

2.2 外挂VAE模型**:**

这个模型类似于PS滤镜**。**

是对大模型的补充,稳定画面的色彩范围。

作用是:滤镜+微调。

系统自带的VAE是animevae,效果一般,建议可以使用kl-f8-anime2或者vae-ft-mse-840000-ema-pruned。

anime2适合画二次元。

840000适合画写实人物。

2.3 LORA模型

它是加强某一种风格的模型**。**

大模型的低秩适应,可以理解为模型插件。

它是在基于某个大模型的基础上,深度学习之后炼制出的小模型。

需要搭配大模型使用,可以在中小范围内影响出图的风格,或是增加大模型所没有的东西。


如果分不清大模型、LORA模型、VAE模型,可以上这个网址查看:https://spell.novelai.dev/

图片


*2.4* CLIP终止层数**:**

它就是:对比(语言到图像)预训练。

CLIP****终止层次越小,渲出的图越接近我们的提示词。数值越大越不像

图片

图片


3 提示词****‍

图片

**
**

正向提示词**:**

在正向提示词框里,写出需要生成内容的提示词。

反向提示词**:**

在反向提示词框里,写出不需要生成内容的提示词。

3.1 提示词相关性**:**

关于人物类的提示词,一般将提示词相关性控制在 7-15 之间。

关于建筑等大场景类的提示词,一般控制在3-7左右。


3.2 正向提示词建议书写结构**:**

画面主要元素,画面细节描述,景别描述,风格描述,画面质量描述。

图片


3.3 提示词的分隔与权重**:**

\1. 提示词要用英文“ , ” 隔开。

\2. SD的提示词是没有从左到右的权重的,也就是说提示词的排名不分先后。如要加减提示词的权重,可以通过括号和数字来实现。


3.4 **正向质量提示词(通用)**

3.4.1 *清爽风格的质量正向提示词*

Highest quality, ultra high definition, masterpiece, 8k quality‍

这段质量提示词生出的造型准确率比较高。适合二次元的风格。

图片

3.4.2 厚重风格的质量正向提示词**:**

{{masterpiece}},{best quality},{highres},original,reflection,unreal engine,body shadow,artstationextremely detailed CG unity 8K wallpaper

这段质量提示词生出来的全身图造型准确率比较低,主要是脸部和手部的造型有破坏。

图片


3.5 反向提示词(通用)****:

NSFW, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.5), blurry, (bad anatomy:1.21), (bad proportions:1.331), extra limbs, (disfigured:1.331), (missing arms:1.331), (extra legs:1.331), (fused fingers:1.61051), (too many fingers:1.61051), (unclear eyes:1.331), lowers, bad hands, missing fingers, extra digit,bad hands, missing fingers, (((extra arms and legs)))


3.6 提示词融合****‍

3.6.1 “ _ ”*:*

在关键词和关键词之间加上“ _ ”,就可以把2种不同的东西融合在一起。如:man_chicken。

图片

*3.6.2* [cat🐶2]****:

[cat🐶2]:中括号里的数字“2”是可以根据效果进行调整的。

这个数字代表的是渲染A到第几张时开始渲染B。

这个目前比较好用,就是在一只动物中,有猫和狗的特征,像猫又像狗。后面的数字,是控制像猫多点还是像狗多点,要根据渲图的效果不断调试。

图片


**3.6.3**** [cat|dog]****:

[cat|dog]:这个也是A和B融合的用法,一半是A一半是B。

图片


****3.6.4****** “ and ”****:

在2个或2个以上的词之间加上“and”,生出来的图就会出现这些元素。

图片


******3.6.5******** “ / ”****:

在2个关键词之间加“ / ”,是混合的用法。如:white/yellow flower,就是生成黄色和白色混合的花。

图片


3.7 提示词隔开****‍

*3.7.1* “ break ”****:

在词与词之间,用“ break ”隔开,如:在银色头发、黑上衣、灰背带裤的女孩的关键词1girl,Silver hair break Black blouses break Gray pants中加入“ break ”,这样可以提高关键词的准确率

图片


3.8 提示词权重**:**

括号()小括号[****]中括号**{ }**大括号
简介 **加权,**每加一层()加权0.1 **降权,**每加一层[]降权0.1 **加权,**每加一层 { } 加权0.05
权重值**(默认值:1)**Prompt = 1(Prompt)=1.1((Prompt)) = 1.21(((Prompt)))=1.33Prompt = 1[Prompt]=0.9[[Prompt]] =0.81[[[Prompt]]]=0.729Prompt = 1{Prompt}= 1.05{{Prompt}}= 1.1025{{{Prompt}}}=1.15

加权重的快捷键:Ctrl + 上/下箭头

关键词的权重,一般在0.5~2之间。

注意:避免个别词条权重过高,安全范围在1上下0.5左右,如果想要强调一个词条可以多写几个类似词条。

括号加数字:

例1: (white flower:1.5),含义:调节白花(white flower)权重为原来的1.5倍(增强)。

例2: (white flower:0.8),含义:调节百花(white flower)的权重为原来的0.8倍(减弱)。


*3.9* 提示词人物特定视角用法**:**

图片

以下关键词可以控制人物的视角:

\1. front view:前视角;

\2. side view:侧视角;

\3. back view:背后视角;

\4. Top view:顶视角;

\5. Bottom view:仰视角。

提示词

Stable Diffusion 最强提示词手册

  • Stable Diffusion介绍
  • OpenArt介绍
  • 提示词(Prompt) 工程介绍

在这里插入图片描述

第一章、提示词格式

  • 提问引导
  • 示例
  • 单词的顺序

在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

第二章、修饰词(Modifiers)

  • Photography/摄影
  • Art Mediums/艺术媒介
  • Artists/艺术家
  • Illustration/插图
  • Emotions/情感
  • Aesthetics/美学

在这里插入图片描述

在这里插入图片描述

第三章、 Magic words(咒语)

  • Highly detailed/高细节
  • Professional/专业
  • Vivid Colors/鲜艳的颜色
  • Bokeh/背景虚化
  • Sketch vs Painting/素描 vs 绘画

在这里插入图片描述

第四章、Stable Diffusion参数

  • Resolution/分辨率
  • CFC/提词相关性
  • Step count/步数
  • Seed/种子
  • Sampler/采样
  • 反向提示词(Prompt)

在这里插入图片描述

第5章 img2img(图生图),in/outpainting(扩展/重绘)

  • 将草图转化为专业艺术作品
  • 风格转换
  • lmg2lmg 变体
  • Img2lmg+多个AI问题
  • lmg2lmg 低强度变体
  • 重绘
  • 扩展/裁剪

第6章 重要提示

  • 词语的顺序和词语本身一样重要
  • 不要忘记常规工具
  • 反向提示词(Prompt)

第7章 OpenArt展示

  • 提示词 (Prompt)
  • 案例展示

篇幅有限,这里就不一一展示了,有需要的朋友可以点击下方的卡片进行领取!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值