随着社会的进步和发展,各界对公共安全方面越来越重视。传统的云计算模式下存在高延迟、网络不稳定和低带宽问题,容易受到高延迟、网络不稳定带来的影响,而边缘计算通过将部分或者全部处理程序迁移至靠近用户或数据收集点,能够大大减少在云中心模式站点下给应用程序所带来的影响,不受延迟和宽带这些参数的影响,不必担心隐私或因数据传输而导致的速度减慢。
边缘人工智能正在使人工智能得到更广泛、更广泛的使用,让智能设备无需访问云即可快速对输入做出反应。
为什么要AI人工智能要结合边缘计算?
①在边缘生成的数据需要人工智能:
随着移动设备和物联网设备数量、类型的快速增加,导致产生大量的需要感知的多模态数据需要处理。AI人工智能能够快速准确的接收到这些数据,并对这些庞大的数据体系中提取内容进行快速的分析决策。
②人工智能技术里的深度学习提供识别技术:
最流行的人工智能技术之一是深度学习,它能够识别模式并检测边缘设备感测到的数据中的异常情况,通过边缘计算技术的视频预处理技术,去除视频图像冗余信息,提高视频图像分析的效率。再通过深度学习对图像进行分析,结合具体场景做出具体的解决方案。
③视频数据的处理能力:
基于边缘感知的边缘预处理功能,能够实现视频数据库的弹性存储。通过对以往的视频数据进行实时调整,能够减少无效视频的储存,降低储存的空间,最大化的存储事件发生事的证据类视频数据,提高视频数据存储空间的利用率。
物联网和AI边缘计算相结合,能够对具体场景的需求做出具体的解决方案,并广泛应用于人们的生活中。
AI边缘计算的应用场景:
由于边缘计算技术自身有显著的优势和特点,AI边缘技术被广泛的应用在多个领域。在智慧校园、智慧交通、智慧社区、智慧文旅、明厨亮灶、平安城市、雪亮工程2.0等场景得到了广泛的应用。深学科技边缘智算魔盒采用云+边的系统架构,自身搭载30+种算法,能够满足多个场景的需求。还可以支持个性化定制,满足私有场景的需求。
AI边缘计算支持的算法类别:
人脸识别:脸人绑定+人脸识别、人脸抓拍、人脸识别、人脸属性分析、人体抓拍;
周界警戒:车辆禁停、车辆离开、人员徘徊、翻墙检测、入侵、越界;
行为警戒:奔跑、摔倒、抽烟、打电话、睡岗、离岗、人员聚众、人员扭打、持械检测;
物品警戒:杂物堆放、物品看守、物品遗留;
人数统计:区域人数统计、出入口人数统计;
明厨亮灶:厨师服、厨师帽、手套、口罩、垃圾暴露、老鼠、垃圾桶未盖、动火离人;
社区警戒:烟雾、火焰、消防设施检测、电瓶车入梯、高空抛物、垃圾满溢、垃圾暴露;
生产安监:火焰、烟雾、安全帽、工服、安全带、反光衣、消防设施检测、液体泄露。