springclud ---- 微服务保护

 1. sentinel

1.1 认识sentinel

        Sentinel 是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。

1.2 sentinel 特性

        Sentinel 是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。

1.3 雪崩问题

微服务中调用某个链路的服务故障 ,造成链路中整个服务都不可用,这就是雪崩;

1.4 解决雪崩问题的常见方式

1.  超时处理: 设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待


2.  仓壁模式
仓壁模式来源于船舱的设计:

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

3.  熔断器
断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
断路器会统计访问某个服务的请求数量,异常比例:
当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断.

4.  限流
流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。
 

1.5  服务保护技术对比

 1.6   安装   sentinel

下载 : 

 启动 : 

java -Dserver.port=8070 -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

引入cloud-demo

1.7 微服务整合sentinal

(1) 引入依赖

<!-- sentinel -->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
        </dependency>

(2) 修改配置文件

spring.cloud.sentinel.transport.dashboard=localhost:8070

(3)访问微服务的任意端点,触发sentinel监控

2. 限流规则

2.1  簇点链路

        簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

        流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

2.2 快速 入门

        点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如下图所示:

        其含义是限制 /order/{orderId}这个资源的单机QPS1,即每秒只允许1次请求,超出的请求会被拦截并报错。

3. 流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式:

直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

3.1 流控模式 -- 关联

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是有限支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

测试 :  

满足下面条件可以使用关联模式:

两个有竞争关系的资源
一个优先级较高,一个优先级较低

3.2 流控模式 --- 链路

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

例如有两条请求链路:

/test1  à /common
/test2  à /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

1. OrderService 中添加一个 queryGoods 方法,不用实现业务
2. OrderController 中,改造 /order/query 端点,调用 OrderService 中的 queryGoods 方法
3. OrderController 中添加一个 /order/save 的端点,调用 OrderService queryGoods 方法
4. queryGoods 设置限流规则,从 /order/query 进入 queryGoods 的方法限制 QPS 必须小于 2
Sentinel 默认只标记 Controller 中的方法为资源,如果要标记其它方法,需要利用 @SentinelResource 注解,示例:
spring.cloud.sentinel.web-context-unify=false

public interface OrderService {
    public Integer save(Order order);

    public String goods();
}

 @Override
    @SentinelResource("goods")
    public String goods() {
        return "访问产品";
    }


    @GetMapping("read")
    public String read(){
        orderService.goods ();
        return "dududu";
    }
    @GetMapping("write")
    public String write(){
        orderService.goods ();
        return "xiexiexie";
    }

 

 

 

 

 

4. 流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:


1.   快速失败    达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
2.   warm up    预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
3.   排队等待    让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
 

(1) 快速失败

        快速失败是默认的处理方式,当请求达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。

例如我们设置阈值为一秒一个请求,当我们请求QPS超过阈值时候,在浏览器中会直接报错:

 

 (2) warm -up 

        阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

        warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

        例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

@GetMapping("{id}")
    @SentinelResource("hot")

    public String hello(@PathVariable Integer id){
        return "hello" + id;
    }
}

 

测试 :

/order/{orderId}这个资源添加热点参数限流,规则如下:

默认的热点参数规则是每 1 秒请求量不超过 2
102 这个参数设置例外:每 1 秒请求量不超过 4
103 这个参数设置例外:每 1 秒请求量不超过 10

 

(3)  排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

        排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

在某一时刻,服务很忙,而其他时刻,服务很闲。

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常

流控效果有哪些?

快速失败: QPS 超过阈值时,拒绝新的请求
warm up QPS 超过阈值时,拒绝新的请求; QPS 阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。
排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

5. 隔离与降级

FeignClient 整合 Sentinel
线程隔离(舱壁模式)
熔断降级

5.1 FeignClient整合Sentinel

        虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合FeignSentinel

(1) 修改配置文件

#开启feign整合sentinel功能
feign.sentinel.enabled=true

(2) 新建  productfeignfactory  定义类

@Component
public class ProductFeignFactory implements FallbackFactory<ProductFeign> {

    @Override
    public ProductFeign create(Throwable throwable) {
        return new ProductFeign () {
            @Override
            public Product selectById(Integer pid) {
                Product product = new Product ();
                product.setPid (-1);
                return product;
            }
        };
    }
}

(3)  使用这个类

//qy163-product  服务提供者的名字
@FeignClient(value = "qy163-product",fallbackFactory = ProductFeignFactory.class)
public interface ProductFeign {

    //抽象方法一定要和服务提供者中的接口方法一模一样
    @GetMapping("/product/getById/{pid}")
    public Product selectById(@PathVariable Integer pid);

}

 

(4) 设置异常

package com.dxh.product.controller;

import com.dxh.product.service.ProductService;
import om.dxh.pojo.Product;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.cloud.context.config.annotation.RefreshScope;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import javax.annotation.Resource;

/**
 * @program: springcloud_02
 * @author: ♥丁新华
 * @create: 2023-05-12 23:53
 **/
@RestController
@RequestMapping("product")
//实时刷新
@RefreshScope
public class ProductController {


    @Resource
    private ProductService productService;

    @GetMapping("getById/{pid}")

    public Product selectById(@PathVariable Integer pid){

        if (pid == 2){
            throw  new RuntimeException ("异常");
        }
        return productService.selectById (pid);
    }

    @Value ("${student.name}")

    private String name;

    @GetMapping("getInfo")
    public String getInfo(){
        return "我叫:" + name+";今年16";
    }
}

线程隔离

线程隔离有两种方式实现:

线程池隔离
信号量隔离( Sentinel 默认采用)

线程隔离(舱壁模式)

线程隔离的两种手段是?

信号量隔离

线程池隔离

信号量隔离的特点是?

基于计数器模式,简单,开销小

线程池隔离的特点是?

基于线程池模式,有额外开销,但隔离控制更强

熔断降级

        熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

熔断策略-慢调用

  • 慢调用:业务的响应时长(RT response time)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:

 

        解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

package com.dxh.product.controller;

import com.dxh.product.service.ProductService;
import om.dxh.pojo.Product;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.cloud.context.config.annotation.RefreshScope;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import javax.annotation.Resource;

/**
 * @program: springcloud_02
 * @author: ♥丁新华
 * @create: 2023-05-12 23:53
 **/
@RestController
@RequestMapping("product")
//实时刷新
@RefreshScope
public class ProductController {


    @Resource
    private ProductService productService;

    @GetMapping("getById/{pid}")

    public Product selectById(@PathVariable Integer pid){

        if (pid == 2){
            throw  new RuntimeException ("异常");
        }
        Product product = productService.selectById (pid);
        

        //休眠
        if (pid == 1){
            try {
                Thread.sleep (100);
            } catch (InterruptedException e) {
                e.printStackTrace ();
            }
        }
        
        return product;
        
    }

    @Value ("${student.name}")

    private String name;

    @GetMapping("getInfo")
    public String getInfo(){
        return "我叫:" + name+";今年16";
    }
}

 

 

 

 

 

熔断策略 - 异常比例、异常数

断路器熔断策略有三种:慢调用、异常比例或异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:

 

        解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

 

 

 

9. 授权队则

9.1  规则持久化
规则管理模式
Sentinel 的控制台规则管理有三种模式:

 

 

 

实现 push 模式
push 模式:控制台将配置规则推送到远程配置中心,例如 Nacos Sentinel 客户端监听 Nacos ,获取配置变更的推送消息,完成本地配置更新
步骤 : 

 

  • 可以在 sentinel 控制台中编辑 限流配置,并且同步到 nacos 做持久化

  • 在 nacos 中修改了限流配置,也可以同步到 sentinel 控制台

要实现上述第一个功能需要对 sentinel 控制台的源码有所了解,并加依改造。

GitHub 上已经有人改造好了,做了个加强版 控制台。

https://github.com/CHENZHENNAME/sentinel-dashboard-nacos

 

2. 解压 :

 

 

 

 

 

 

 

 微服务客户端接入sentinel控制面板

(1)  引入依赖

<dependency>
            <groupId>com.alibaba.csp</groupId>
            <artifactId>sentinel-datasource-nacos</artifactId>
        </dependency>

(2)修改配置文件


#???:8090~8099 []
server.port=8091
#???
spring.datasource.url=jdbc:mysql://localhost:3306/spring_cloud?serverTimezone=Asia/Shanghai
spring.datasource.password=abc123
spring.datasource.username=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

#??sql??
mybatis-plus.configuration.log-impl=org.apache.ibatis.logging.stdout.StdOutImpl
#??  ????-??
spring.application.name=qy163-order
#??ribbon????celue
   
qy163-product.ribbon.NFLoadBalancerRuleClassName=com.netflix.loadbalancer.RandomRule

#qy163-product  哈哈哈哈
#com.netflix.loadbalancer.RandomRule  嘎嘎嘎

#zipkin
spring.zipkin.base-url=http://localhost:9411/

spring.cloud.sentinel.transport.dashboard=localhost:8070

spring.cloud.sentinel.web-context-unify=false
#开启feign整合sentinel功能

feign.sentinel.enabled=true


spring.cloud.sentinel.datasource.ds1-flow.nacos.server-addr=localhost:8848
spring.cloud.sentinel.datasource.ds1-flow.nacos.data-id=${spring.application.name}-flow-rules
# 还可以是 degrade authority param-flow
spring.cloud.sentinel.datasource.ds1-flow.nacos.rule-type=flow
spring.cloud.sentinel.datasource.ds1-flow.nacos.data-type=json
spring.cloud.sentinel.datasource.ds1-flow.nacos.group-id=SENTINEL_GROUP

(3)  启动微服务
开始访问 :

        添加成功后,nacos 中,你指定的命名空间下会自动生成 `${application-name}-flow-rules` 格式的配置文件

 

 

 

修改内容  同步修改 :

 当你在 sentinel 控制台中,无论增加规则,还是修改规则,都会同步到 nacos;相反,修改 nacos 中 配置文件的限流规则,也会同步到 sentinel 。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值