【CV中的Attention机制】ShuffleAttention

【GiantPandaCV导语】这个系列已经好几个月没有更新了,开始继续更这个方向论文,19年、20年又出现了很多关于Attention的研究,本文SA-Net:shuffle attention for deep convolutional neural networks 发表在ICASSP 21,传承了SGE的设计理念的同时,引入Channel Shuffle,达到了比较好的效果,有理有据。文章首发于GiantPandaCV,请勿二次转载。

1. 摘要

目前注意力机制主要可以分为两类,空间注意力机制和通道注意力机制,两者目标用于捕获成对的像素级关系和通道间依赖关系的。同时使用两种注意力机制可以达到更好的效果,但是不可避免地增加了模型的计算量。

本文提出了Shuffle Attention(SA)模块来解决这个问题,可以高效地结合两种注意力机制。具体来讲:

  • SA对通道特征进行分组,得到多个组的子特征。
  • 对每个子特征使用SA Unit同时使用空间和通道间注意力机制。
  • 最后,所有的子特征会被汇集起来,然后使用Channel Shuffle操作让不同组的特征进行融合。

实验结果:在ImageNet-1k数据集上,SA结果要比ResNet50的top 1高出1.34%。同时在MS COCO数据集上进行了目标检测和目标分割的实验,在模型复杂度比较低的情况下,达到了SOTA。

这个实验思路可以看出和SENet如出一辙,分组处理的思想在SGE中提到过,SA-Net添加了Channel Shuffle的操作参考ShuffleNet系列论文,有理有据,实现也很简单。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值