【大模型本地部署】手把手教你打造本地化部署的LLM+RAG知识库(3)-完结

1. 前言

上篇我们已经优化了以下部分:

已优化部分

1)每次启动服务,都要重新构建知识库向量索引(build_vector_index方法),耗时造成不必要的性能浪费,如果每次只针对新加入的知识库文件做向量索引,只做增量索引,这样就好很多了。

2)embedding有待优化,模型选择,分词器选择怎样才适合?

3)打造一个UI界面进行交互,为交付奠定基础

4)引入数据库,为后续会话管理知识库管理打好基础

本文为LLM+RAG系列最后一篇,我们将实现会话管理、历史消息的加载与删除、知识库的预览与管理操作。

2. 会话的保存与加载

我们知道,会话就是指用户与AI之间的一轮对话,只要不开始新的聊天,都算做同一个会话。(当然,在实际设计时,需考虑上下文长度,在即将到达LLM上下文上限时就要强制用户开启新的会话,以免造成服务端性能崩溃,一般设置为80%上文长度就自动开启新的会话)。

会话创建与保存策略

在初次聊天时,服务端会自动生成一个session_id,随后,每次聊天的记录,都会携带这个session_id进行保存。

当用户点击“开启新会话”时,主动调用后端/new_session 方法创建新的会话,前端也会自动将创建后的会话id缓存在浏览器,以供后续对话进行携带。

所以整个过程比较简单,在在上篇文章中,对话方法(generate_answer) 中,已经包含了聊天记录的保存代码。

创建与删除会话代码:

@app.post("/new_session")
async def start_new_session(db: Session = Depends(get_db)):
    new_session_id = str(uuid.uuid4())
    new_session = SessionModelDB(session_id=new_session_id)
    db.add(new_session)
    db.commit()
    db.refresh(new_session)
    return {"id": new_session.id}


@app.delete("/delete_session/{session_id}")
async def delete_session(session_id: int, db: Session = Depends(get_db)):
    # 查询要删除的会话
    session_to_delete = db.query(SessionModelDB).filter(SessionModelDB.id == session_id).first()

    # 如果会话不存在,返回 404 错误
    if not session_to_delete:
        raise HTTPException(status_code=404, detail="会话不存在")

    # 删除会话
    db.delete(session_to_delete)
    db.commit()

    return {"message": "会话删除成功"}

3、历史消息的加载与删除

在删除会话的同时,历史消息一并删除。为了代码简洁,保证数据的一致性考虑,在设计消息表时可以直接设置级联删除策略:

4. 知识库的预览与管理

知识库的管理是比较重要的模块,也是可以持续优化的模块,本文仅提供基础的知识库管理思路,后续优化还请大家自行处理和完善。

4.1 知识库文件列表管理

我们只需要通过服务端的list_documents方法即可获得文件列表:

@app.get("/list_documents")
async def list_documents():
    documents = []
    for root, dirs, files in os.walk(KNOWLEDGE_BASE_DIR):
        for file in files:
            if file.endswith('.md'):  # 只获取 md 文件
                file_path = os.path.join(root, file)
                company_name = get_company_name_from_md(file_path)
                if company_name is not None:
                    documents.append(company_name )
    return {"documents": documents}

4.2 知识库文件的预览:

通过服务端接口/get_document_content,加载知识库文件的内容:

@app.get("/get_document_content")
async def get_document_content(file_path: str = Query(..., description="要获取内容的文档名称"),
                               db: Session = Depends(get_db)):
    print("预览的文件===" + file_path)
    # 根据文件名从数据库中查询对应的路径
    kb_file = db.query(KbFile).filter(KbFile.name == file_path).first()
    if not kb_file:
        raise HTTPException(status_code=404, detail="文档不存在")

    full_path = kb_file.path
    if not os.path.exists(full_path):
        raise HTTPException(status_code=404, detail="文档不存在")
    try:
        with open(full_path, 'r', encoding='utf-8') as file:
            content = file.read()
        return content
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"读取文档内容出错: {str(e)}")

4.3 知识库文件初始化

当我们更新了知识库的内容,或者新增了知识库文件,就需要对知识库重新初始化,重新构建向量索引。

所以我们提供了服务端/kb_init方法:

@app.get("/kb_init")
async def kb_init():
    db = SessionLocal()
    inserted_kb_files = []
    try:
        # 清空数据库里的所有 KbFile 记录 - 使用更明确的删除方式
        try:
            count = db.query(KbFile).delete(synchronize_session='fetch')
            db.commit()
            logger.info(f"已删除 {count} 条知识库文件记录")

            # 验证删除是否成功
            remaining = db.query(KbFile).count()
            logger.info(f"剩余知识库文件记录数: {remaining}")

            if remaining > 0:
                logger.warning("数据库记录未完全清空,尝试使用原生SQL")
                db.execute(text("DELETE FROM kb_file"))
                db.commit()
        except Exception as e:
            db.rollback()
            logger.error(f"删除知识库文件记录失败: {e}")
            return {"message": f"知识库文件初始化失败: {e}"}

        # 扫描并添加知识库文件到数据库
        for root, dirs, files in os.walk(KNOWLEDGE_BASE_DIR):
            for file in files:
                file_path = os.path.join(root, file)
                file_ext = os.path.splitext(file)[1].lower()

                if file_ext == '.md':
                    name = get_company_name_from_md(file_path)
                    if not name:
                        name = os.path.splitext(file)[0]  # 如果获取第一行失败,使用文件名
                else:
                    name = os.path.splitext(file)[0]

                new_kb_file = KbFile(name=name, path=file_path)
                db.add(new_kb_file)
                inserted_kb_files.append(new_kb_file)

        db.commit()

        # 重要:强制重建向量索引
        # 删除现有的向量索引和文件列表,以便它们被重新创建
        if os.path.exists(VECTOR_INDEX_FILE):
            os.remove(VECTOR_INDEX_FILE)
        if os.path.exists(FILE_LIST_FILE):
            os.remove(FILE_LIST_FILE)

        # 重新构建向量索引
        logger.info("知识库文件更新,正在重建向量索引...")
        global docsearch
        docsearch = await load_or_build_vector_index(KNOWLEDGE_BASE_DIR)
        logger.info("向量索引重建完成")

        # 将 SQLAlchemy 对象转换为 Pydantic 模型对象
        pydantic_kb_files = [KbFileModel.model_validate(kb_file) for kb_file in inserted_kb_files]

        return {
            "message": "知识库文件初始化成功",
            "inserted_kb_files": pydantic_kb_files
        }
    except Exception as e:
        db.rollback()
        logger.error(f"知识库文件初始化失败: {e}")
        return {"message": f"知识库文件初始化失败: {e}"}
    finally:
        db.close()

对于重建后的知识库,数据库中会保存新的知识库文件名称、保存路径已经创建时间。

此处可优化的点: 可以给每个文件创建md5码,只有内容发生变更的,才参与重建。这样在知识库文件很多的时候,不用全部从头来过,节约大量索引重建的时间。

至此,一个完整的本地化LLM+RAG知识库搜索应用框架便完成了,在此基础上,大家可以自行扩展和优化。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值