一文读懂 RAGFlow 知识库接入 Dify 的全流程

前面,我发了一篇部署ragflow的文章,以及如何让ragflow与dify共存在一台电脑上:安装ragflow后,之前部署的Dify咋不能用了?

今天来给大家分享一下,如何将ragflow知识库接入dify,作为dify的外挂知识库。

一、RAGFlow中相关操作

一)配置模型

如果知识库配置RAPTOR策略的话,需要配置大模型,此处跟Dify上配置模型类似,rerank模型,embedding模型已经默认配置好,无需再配置,只需配置chat模型即可,配置上后,方便其他地方使用。

图片

 

二)创建RAGFlow知识库

此处先以最简单配置。

图片

 

图片

 

图片

 

三)获取ragflow接口密钥

图片

 

四)获取知识库ID

图片

 

二、Dify接入RAGFlow

一)添加外部知识库API

图片

 

二)填写RAGFlow关键信息

① 自定义外部知识库名称

② 外部知识库接口base url

③ RAGFlow的API KEY

图片

 

三)连接外部知识库

图片

 

图片

 

三、创建一个Dify聊天助手

一)应用基本信息

图片

 

二)添加知识库为上下文

图片

 

三)测试

1、聊天效果

图片

 

2、请求日志查看

图片

 

RAGFlow已经自带了中英文各种嵌入模型和rerank模型,到对应场景,配置参数时,自动默认好对应模型,这一点很赞!

通过其背部整合的深度文档解析器,可以针对文档布局进行分析,就像人有了一双眼睛,看到的不仅仅是文字,还有篇章布局,获取的文档信息更加丰富,层次维度更加多元。

我们可以根据情况,各取所长,融入更多自己的更多工作场景!

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

<think>嗯,用户问的是RAGFlow知识库Dify知识库的对比,性能和功能方面。我需要先了解这两个产品的具体信息。RAGFlow好像是深度求索公司开源的,基于检索增强生成(RAG)的系统,支持多格式文件解析,还有自动文本图像分割。而Dify可能是一个AI应用开发平台,提供可视化工作流,可能更注重快速构建应用。 首先,性能方面,RAGFlow可能有更强的处理能力,比如高精度解析和异构数据混合检索,适合复杂场景。而Dify可能在处理速度上有优化,适合快速响应。然后功能上,RAGFlow支持多格式,深度处理,适合企业级需求;Dify可能更灵活,可视化强,适合开发者快速搭建应用。 用户可能需要选型建议,所以得比较两者的优缺点。比如企业需要处理复杂文档,RAGFlow更合适;如果需要快速开发应用,Dify更好。可能还要提到社区支持和部署方式,RAGFlow是开源,适合定制,而Dify可能有SaaS版本,方便使用。 还要检查是否有引用来源,但用户提供的参考里没有具体引用,所以可能不需要添加。确保回答结构清晰,分点比较性能和功能,最后给出选型建议。同时生成相关的问题,比如适用场景、技术架构差异、如何选择等。</think>### RAGFlow知识库Dify知识库对比分析 #### 1. **核心定位** - **RAGFlow**: 专注于基于检索增强生成(RAG)的文档解析与问答系统,支持多格式文件解析(如PDF、Word、Markdown)和复杂语义理解,适用于企业级知识库构建[^1]。 - **Dify**: 定位为AI应用开发平台,提供可视化工作流设计,支持快速搭建问答系统、聊天机器人等应用,注重开发效率与灵活性。 #### 2. **性能对比** | 维度 | RAGFlow | Dify | |---------------|-------------------------------------|-------------------------------------| | **解析能力** | 支持文本/图像混合解析,支持公式提取 | 依赖第三方解析工具(如Unstructured)| | **检索精度** | 异构数据混合检索(文本+向量) | 基于向量相似度的通用检索 | | **响应速度** | 侧重高精度,适合复杂场景 | 优化交互速度,适合轻量级应用 | #### 3. **功能差异** - **RAGFlow特色功能**: - 自动文本/图像分割与语义关联 - 多路召回策略(关键词+向量混合检索) - 支持公式、表格等非结构化数据提取 - **Dify特色功能**: - 可视化提示词编排与模型微调 - 多模型支持(GPT/Claude/本地模型) - 数据标注与持续学习能力 #### 4. **技术架构** ```mermaid graph LR A[RAGFlow] --> B(基于Python/Java混合架构) A --> C(支持私有化部署) D[Dify] --> E(全Python架构) D --> F(提供SaaS/私有化版本) ``` #### 5. **选型建议** - **选择RAGFlow的场景**: - 需要处理科研论文、技术文档等复杂格式 - 要求公式、表格等专业内容的高精度解析 - 企业级私有化部署需求 - **选择Dify的场景**: - 快速构建轻量级问答系统 - 需要多模型灵活切换 - 低代码开发需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值