堆是具有以下性质的完全二叉树:
每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;
每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
如下图:
同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子:
该数组从逻辑上讲就是一个堆结构,用简单的公式描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] OR arr[i] >= arr[2i]
小顶堆:arr[i] <= arr[2i+1] OR arr[i] <= arr[2i]
效率:
时间复杂度:O(nlog2n)
空间复杂度: O(1)
稳定性:不稳定
JavaScript代码实现:
function heapSort(array) {
var temp;
var i;
var result = "";
for (i = Math.floor(array.length / 2); i >= 0; i--) {
heapAdjust(array, i, array.length - 1); //将数组array构建成一个大顶堆
}
for (i = array.length - 1; i >= 0; i--) {
/*把根节点交换出去*/
temp = array[i];
array[i] = array[0];
array[0] = temp;
/*余下的数组继续构建成大顶堆*/
heapAdjust(array, 0, i - 1);
/* 输出结果 */
result += "<br />第" + (array.length - i).toString() + "遍排序的结果是:";
for (var n = 0; n < array.length; n++) {
result += array[n] + ",";
}
/* 输出结果结束 */
}
return result;
}
//要调整的子树
//start为数组开始下标
//max是数组结束下标
function heapAdjust(array, start, max) {
var temp, j;
temp = array[start];//temp是根节点的值
for (j = 2 * start; j < max; j *= 2) {
if (j < max && array[j] < array[j + 1]) { //取得较大孩子的下标
++j;
}
if (temp >= array[j])
break;
array[start] = array[j];
start = j;
}
array[start] = temp;
}
var array = [50,45,40,20,25,35,30,10,15];
console.log(heapSort(array)); //10,15,20,25,30,35,40,45,50