同余最短路

题意大致就是 一张无向图  每条边可以多次经过  问s,到t 的不小于k的最短路  (或者仅仅等于k的最短路)


取m=2*min(s到下一个点的最短路径):   如果一条路径长度sum可行   那么sum+m也是可行的   

然后 dis[i][j]表示从起点s到i点 ,路径长度%m==j  的最短路径    

最后就是利用同余的性质去跑最短路spfa


题目  HDU 6071

          51NOD 1326

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>  
#include <iostream>  
#include <cstdlib>  
#include <cstring>  
#include <string>
#include <cstdio>  
#include <climits>
#include <cmath> 
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <map>
#include <sstream>
#define LL long long
#define fora(i,a,n) for(int i=a;i<=n;i++)
#define fors(i,n,a) for(int i=n;i>=a;i--)
#define sci(x) scanf("%d",&x)
#define scl(x) scanf("%lld",&x)
const int MAXN = 100024;
const long long INF = 1e18 + 60002;
const double eps = 1e-8;
using namespace std;
struct Node {
	LL v, mod, diss;
	Node(LL _v, LL _mod, LL _diss) {
		v = _v; mod = _mod; diss = _diss;
	}
	Node() {}
};
LL t, k, m;
LL g[4][60003];
bool vis[4][60003];
LL dis[4][4];
void spfa(LL v) {
	queue<Node>q;
	memset(vis, 0, sizeof(vis));
	memset(g, 0x3f, sizeof(g));

	q.push(Node(1, 0, 0));
	vis[1][0] = 1;

	LL nex_dis, nex_mod, nex_v;
	while (!q.empty()) {
		Node f = q.front(); q.pop();
		vis[f.v][f.mod] = 0;
		for (int i = -1, j = 0; j <= 1; i += 2, j++) {
			nex_v = (f.v + i + 4) % 4;
			nex_dis = f.diss + dis[f.v][nex_v];
			nex_mod = nex_dis%m;
			if (g[nex_v][nex_mod]>nex_dis) {
				g[nex_v][nex_mod] = nex_dis;
				if(!vis[nex_v][nex_mod]){
					vis[nex_v][nex_mod] = 1;
					q.push(Node(nex_v, nex_mod, nex_dis));
				}
			}
		}
	}
	LL Min = 4*INF, num;
	for (int i = 0; i<m; i++) {
		num = g[1][i];
		if (num<k) { num += ((k - num - 1) / m + 1)*m; }
		if (num<Min)
			Min = num;
	}
	printf("%lld\n", Min);
}
int main() {
#ifdef local
	freopen("ini.txt", "r", stdin);
	//freopen("out.txt","w",stdout);
#endif
	scanf("%lld", &t);
	while (t--) {
		memset(dis, 0, sizeof(dis));
		scanf("%lld", &k);
		for (int i = 0; i<4; i++) scanf("%lld", &dis[i][(i + 1) % 4]), dis[(i + 1) % 4][i] = dis[i][(i + 1) % 4];
		m = 2 * min(dis[1][0], dis[1][2]);
		spfa(1);
	}
	return 0;
}

同余最短路是指在模一个数的意义下求解最短路的问题。具体来说,给定一个有向图 $G=(V,E)$,每个边 $e\in E$ 都有一个非负的权值 $w_e$,以及一个模数 $p$。同时给定一个起点 $s$ 和一个终点 $t$。求一条从 $s$ 到 $t$ 的路径,使得路径上所有边权的和在模 $p$ 意义下最小。 证明正确性: 同余最短路算法基于 Bellman-Ford 算法,可以证明其正确性。Bellman-Ford 算法通过松弛每条边 $e$,对于每个顶点 $v$,维护从起点 $s$ 到 $v$ 的最短距离 $d_v$。同余最短路算法也是基于松弛每条边,但是对于每个顶点 $v$,维护从起点 $s$ 到 $v$ 在模 $p$ 意义下的最短距离 $d_v$。 因为同余最短路算法是在模 $p$ 意义下计算距离,所以需要使用模运算。在松弛每条边时,需要更新到达每个顶点的最短距离。具体地,设 $v$ 是边 $e=(u,v)$ 的终点,$w_e$ 是边 $e$ 的边权,则松弛边 $e$ 的操作可以表示为: $$d_v\leftarrow\min(d_v,d_u+w_e\mod p)$$ 其中,$d_u$ 表示从起点 $s$ 到 $u$ 的最短距离。 同余最短路算法的正确性证明可以参考 Bellman-Ford 算法的正确性证明。同余最短路算法的时间复杂度为 $O(VE)$。 代码实现: 以下是同余最短路算法的 Python 代码实现: ```python from collections import deque def shortest_path_mod_p(graph, s, t, p): n = len(graph) INF = float('inf') dist = [INF] * n dist[s] = 0 q = deque([s]) in_queue = [False] * n in_queue[s] = True while q: u = q.popleft() in_queue[u] = False for v, w in graph[u]: d = (dist[u] + w) % p if dist[v] > d: dist[v] = d if not in_queue[v]: q.append(v) in_queue[v] = True return dist[t] ``` 其中,`graph` 是图的邻接表表示,每个元素是一个二元组 `(v, w)`,表示从节点 `u` 到节点 `v` 有一条边权为 `w` 的边。`s` 和 `t` 分别是起点和终点的编号,`p` 是模数。函数返回从起点 `s` 到终点 `t` 在模 `p` 意义下的最短距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值