Day2_Homework

本文探讨了集合上的关系及其运算,例如模2同余关系的划分,以及自定义关系R1和R2的组合运算。同时介绍了粗糙集理论中的上下近似概念,并通过实例解释了函数的概念和发展。此外,还给出了一个具体矩阵的各种范数计算。
摘要由CSDN通过智能技术生成

A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A上的 “模 2 同余” 关系及相应的划分.

P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P}=\{\{1,5,9\},\{2,8\}\} P={{1,5,9},{2,8}}

A = { 1 , 2 , 5 , 8 , 9 } , \mathbf{A} = \{1, 2, 5, 8, 9\} , A={1,2,5,8,9},自己给定两个关系 R 1 和 R 2 , \mathbf{R_1}和\mathbf{R_2} , R1R2,并计算 R 1 R 2 , R 1 + , R 1 ∗ . \mathbf{R_1R_2},\mathbf{R_1^+},\mathbf{R_1^*}. R1R2,R1+,R1.

R 1 = { ( 1 , 5 ) ,   ( 1 , 2 ) ,   ( 2 , 5 ) ,   ( 5 , 1 ) } \mathbf{R_1}=\mathrm{\{(1,5),\ (1,2), \ (2,5), \ (5,1)\}} R1={(1,5), (1,2), (2,5), (5,1)}
R 2 = { ( 2 , 8 ) ,   ( 5 , 9 ) } \mathbf{R_2}=\mathrm{\{(2,8),\ (5,9)\}} R2={(2,8), (5,9)}
R 1 + = { ( 1 , 2 ) ,   ( 1 , 5 ) ,   ( 2 , 1 ) ,   ( 2 , 2 ) } \mathbf{R_1^+}=\mathrm{\{(1,2), \ (1,5), \ (2,1), \ (2,2)\}} R1+={(1,2), (1,5), (2,1), (2,2)}
R 1 ∗ = { ( 1 , 2 ) ,   ( 1 , 5 ) ,   ( 2 , 1 ) ,   ( 1 , 1 ) ,   ( 2 , 2 ) ,   ( 5 , 5 ) } \mathbf{R_1^*}=\mathrm{\{(1,2), \ (1,5), \ (2,1), \ (1,1), \ (2,2), \ (5,5)\}} R1={(1,2), (1,5), (2,1), (1,1), (2,2), (5,5)}

查阅粗糙集上下近似的定义并大致描述.

: 粗糙集理论作为一种数据分析处理理论,在1982年由波兰科学家创立,是一种处理不精确(imprecise)、不一致(inconsistent)、不完整(incomplete)等各种不完备的信息有效的工具。1995年ACM将粗糙集理论列为新兴的计算机科学的研究课题。
上下近似的概念为:假设给定了一个 A \mathbf{A} A上的子集合 X \mathbf{X} X={ x 2 , x 5 , x 7 x_2,x_5,x_7 x2,x5,x7},无论是单属性知识还是由几个知识进行交、并运算合成的知识,都不能得到这个新的集合 X \mathbf{X} X,也就是在所有的现有知识里面找出跟他最像的两个一个作为下近似,一个作为上近似。可以选择“蓝色的大方块或者蓝色的小圆形”这个概念: { x 5 , x 7 } \mathrm{\{}{x_5,x_7}\mathrm{\}} {x5,x7}作为 X \mathbf{X} X的下近似。选择“三角形或者蓝色的” { x 1 , x 2 , x 5 , x 7 , x 8 } \{x_1,x_2,x_5,x_7,x_8\} {x1,x2,x5,x7,x8}作为上近似,同时下近似集是在那些所有的包含于 X \mathbf{X} X的知识库中的集合中求交得到的,而上近似则是将那些包含 X \mathbf{X} X的知识库中的集合求并得到的

举例说明你对函数的认识

:早期认识就是纯数学上面的函数问题,如何函数的定义是什么、计算函数值、导数、极值、最值。随着学习的深入,多元函数的加入,偏导数、多元函数的最值问题、梯度计算。为现在的神经网络的构造埋下铺垫,如:一个神经网络模型(如Linear)可以是一个函数、多标签分类器可以是一个函数、神经网络可以被过拟合函数模拟。

自己给定一个矩阵并计算其各种范数

:如该矩阵: [ 1 2 0 − 1 2 − 1 0 1 1 ] \left[ \begin{matrix} 1 & 2 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 1 \end{matrix} \right] 110221011 l 0 \mathcal{l_0} l0范式:7
l 1 \mathcal{l_1} l1范式 ∥ A ∥ = m a x 1 ≤ j ≤ 3 ∑ i = 0 3 x i ∣ a i j ∣ = m a x { 2 , 5 , 2 } = 5 \|\mathbf{A}\|=\mathop{max}\limits_{1\le j \le3}\sum\limits_{i=0}^3 {x_i}|a_{ij}|=max\{2,5,2\}=5 A=1j3maxi=03xiaij=max{2,5,2}=5
l 2 \mathcal{l_2} l2范式:先求 A T A \mathbf{A}^\mathrm{T}\mathbf{A} ATA的特征值
A T A \mathbf{A}^\mathrm{T}\mathbf{A} ATA [ 2 0 1 0 9 − 1 1 − 1 2 ] \left[ \begin{matrix} 2 & 0 & 1 \\ 0 & 9 & -1 \\ 1 & -1 & 2 \end{matrix} \right] 201091112再根据det( λ E − A T A , 解 得 λ 1 = 9.1428 , λ 2 = 2.9211 , λ 3 = 0.9361 \lambda E-\mathbf{A}^\mathrm{T}\mathbf{A},解得\lambda_1=9.1428,\lambda_2=2.9211,\lambda_3=0.9361 λEATA,λ1=9.1428,λ2=2.9211,λ3=0.9361)
即: ∥ A ∥ 2 = 9.1428 \|A\|_2=\sqrt{9.1428} A2=9.1428
l ∞ \mathcal{l_\infty} l范式 ∥ A ∥ = m a x 1 ≤ j ≤ 3 ∑ i = 0 3 x i ∣ a i j ∣ = m a x 1 ≤ j ≤ 3 { 3 , 4 , 2 } = 4 \|\mathbf{A}\|=\mathop{max}\limits_{1\le j \le3}\sum\limits_{i=0}^3 {x_i}|a_{ij}|=\mathop{max}\limits_{1\le j \le3}\{3,4,2\}=4 A=1j3maxi=03xiaij=1j3max{3,4,2}=4

解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标: m i n ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \mathrm{min}\sum\limits_{(i,j)\in\Omega}(f(x_i,t_j)-r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2

:使用的是 m i n min min即获取该函数的最小值:其中 r i j r_{ij} rij为评分矩阵, x i x_i xi为用户信息表的第 i \mathcal{i} i条信息, t j t_j tj为商品信息表对应的第 j \mathcal{j} j条信息,然后学习到 f f f函数中,利用学习到的函数 f f f减去评分矩阵差值然后平方累加得到 m i n min min.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值