令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A上的 “模 2 同余” 关系及相应的划分.
答:
P
=
{
{
1
,
5
,
9
}
,
{
2
,
8
}
}
\mathcal{P}=\{\{1,5,9\},\{2,8\}\}
P={{1,5,9},{2,8}}
A = { 1 , 2 , 5 , 8 , 9 } , \mathbf{A} = \{1, 2, 5, 8, 9\} , A={1,2,5,8,9},自己给定两个关系 R 1 和 R 2 , \mathbf{R_1}和\mathbf{R_2} , R1和R2,并计算 R 1 R 2 , R 1 + , R 1 ∗ . \mathbf{R_1R_2},\mathbf{R_1^+},\mathbf{R_1^*}. R1R2,R1+,R1∗.
答:
R
1
=
{
(
1
,
5
)
,
(
1
,
2
)
,
(
2
,
5
)
,
(
5
,
1
)
}
\mathbf{R_1}=\mathrm{\{(1,5),\ (1,2), \ (2,5), \ (5,1)\}}
R1={(1,5), (1,2), (2,5), (5,1)}
R
2
=
{
(
2
,
8
)
,
(
5
,
9
)
}
\mathbf{R_2}=\mathrm{\{(2,8),\ (5,9)\}}
R2={(2,8), (5,9)}
R
1
+
=
{
(
1
,
2
)
,
(
1
,
5
)
,
(
2
,
1
)
,
(
2
,
2
)
}
\mathbf{R_1^+}=\mathrm{\{(1,2), \ (1,5), \ (2,1), \ (2,2)\}}
R1+={(1,2), (1,5), (2,1), (2,2)}
R
1
∗
=
{
(
1
,
2
)
,
(
1
,
5
)
,
(
2
,
1
)
,
(
1
,
1
)
,
(
2
,
2
)
,
(
5
,
5
)
}
\mathbf{R_1^*}=\mathrm{\{(1,2), \ (1,5), \ (2,1), \ (1,1), \ (2,2), \ (5,5)\}}
R1∗={(1,2), (1,5), (2,1), (1,1), (2,2), (5,5)}
查阅粗糙集上下近似的定义并大致描述.
答: 粗糙集理论作为一种数据分析处理理论,在1982年由波兰科学家创立,是一种处理不精确(imprecise)、不一致(inconsistent)、不完整(incomplete)等各种不完备的信息有效的工具。1995年ACM将粗糙集理论列为新兴的计算机科学的研究课题。
上下近似的概念为:假设给定了一个
A
\mathbf{A}
A上的子集合
X
\mathbf{X}
X={
x
2
,
x
5
,
x
7
x_2,x_5,x_7
x2,x5,x7},无论是单属性知识还是由几个知识进行交、并运算合成的知识,都不能得到这个新的集合
X
\mathbf{X}
X,也就是在所有的现有知识里面找出跟他最像的两个一个作为下近似,一个作为上近似。可以选择“蓝色的大方块或者蓝色的小圆形”这个概念:
{
x
5
,
x
7
}
\mathrm{\{}{x_5,x_7}\mathrm{\}}
{x5,x7}作为
X
\mathbf{X}
X的下近似。选择“三角形或者蓝色的”
{
x
1
,
x
2
,
x
5
,
x
7
,
x
8
}
\{x_1,x_2,x_5,x_7,x_8\}
{x1,x2,x5,x7,x8}作为上近似,同时下近似集是在那些所有的包含于
X
\mathbf{X}
X的知识库中的集合中求交得到的,而上近似则是将那些包含
X
\mathbf{X}
X的知识库中的集合求并得到的
举例说明你对函数的认识
答:早期认识就是纯数学上面的函数问题,如何函数的定义是什么、计算函数值、导数、极值、最值。随着学习的深入,多元函数的加入,偏导数、多元函数的最值问题、梯度计算。为现在的神经网络的构造埋下铺垫,如:一个神经网络模型(如Linear)可以是一个函数、多标签分类器可以是一个函数、神经网络可以被过拟合函数模拟。
自己给定一个矩阵并计算其各种范数
答:如该矩阵:
[
1
2
0
−
1
2
−
1
0
1
1
]
\left[ \begin{matrix} 1 & 2 & 0 \\ -1 & 2 & -1 \\ 0 & 1 & 1 \end{matrix} \right]
⎣⎡1−102210−11⎦⎤
l
0
\mathcal{l_0}
l0范式:7
l
1
\mathcal{l_1}
l1范式:
∥
A
∥
=
m
a
x
1
≤
j
≤
3
∑
i
=
0
3
x
i
∣
a
i
j
∣
=
m
a
x
{
2
,
5
,
2
}
=
5
\|\mathbf{A}\|=\mathop{max}\limits_{1\le j \le3}\sum\limits_{i=0}^3 {x_i}|a_{ij}|=max\{2,5,2\}=5
∥A∥=1≤j≤3maxi=0∑3xi∣aij∣=max{2,5,2}=5
l
2
\mathcal{l_2}
l2范式:先求
A
T
A
\mathbf{A}^\mathrm{T}\mathbf{A}
ATA的特征值
A
T
A
\mathbf{A}^\mathrm{T}\mathbf{A}
ATA:
[
2
0
1
0
9
−
1
1
−
1
2
]
\left[ \begin{matrix} 2 & 0 & 1 \\ 0 & 9 & -1 \\ 1 & -1 & 2 \end{matrix} \right]
⎣⎡20109−11−12⎦⎤再根据det(
λ
E
−
A
T
A
,
解
得
λ
1
=
9.1428
,
λ
2
=
2.9211
,
λ
3
=
0.9361
\lambda E-\mathbf{A}^\mathrm{T}\mathbf{A},解得\lambda_1=9.1428,\lambda_2=2.9211,\lambda_3=0.9361
λE−ATA,解得λ1=9.1428,λ2=2.9211,λ3=0.9361)
即:
∥
A
∥
2
=
9.1428
\|A\|_2=\sqrt{9.1428}
∥A∥2=9.1428
l
∞
\mathcal{l_\infty}
l∞范式:
∥
A
∥
=
m
a
x
1
≤
j
≤
3
∑
i
=
0
3
x
i
∣
a
i
j
∣
=
m
a
x
1
≤
j
≤
3
{
3
,
4
,
2
}
=
4
\|\mathbf{A}\|=\mathop{max}\limits_{1\le j \le3}\sum\limits_{i=0}^3 {x_i}|a_{ij}|=\mathop{max}\limits_{1\le j \le3}\{3,4,2\}=4
∥A∥=1≤j≤3maxi=0∑3xi∣aij∣=1≤j≤3max{3,4,2}=4
解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标: m i n ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \mathrm{min}\sum\limits_{(i,j)\in\Omega}(f(x_i,t_j)-r_{ij})^2 min(i,j)∈Ω∑(f(xi,tj)−rij)2
答:使用的是 m i n min min即获取该函数的最小值:其中 r i j r_{ij} rij为评分矩阵, x i x_i xi为用户信息表的第 i \mathcal{i} i条信息, t j t_j tj为商品信息表对应的第 j \mathcal{j} j条信息,然后学习到 f f f函数中,利用学习到的函数 f f f减去评分矩阵差值然后平方累加得到 m i n min min.