2022/8/1日报
COS-LDL引入理解
介绍 LDL 是什么、LDL 与现有的算法(MLL)区别是什么(参考下图) 、LDL 解决了什么样的问题、LDL 的应用。
- LDL是MLL的泛化框架。
- LDL提供比 MLL 更丰富的信息,同时解决了标签模糊的问题(通过给每个实例分配一个标签分布,而不是MLL那样分配逻辑标签)
- LDL解决标签模糊的问题。
- LDL应用在年龄估计,面部表情识别等。
介绍现存的算法,现存算法在那些地方是可取的。点出标签相关性可以提高算法精
度。(LDLLC、IIS-LLD、LDL-SCL等)
提出自己的算法:设计了距离映射矩阵来描述相关性。陈述 LDL 要做的事情:找
到最优的 θ,使得预测的标签分布与真实的标签分布近可能的相似。
实验设计的简单描述,以及这个方法所作出的贡献。
1)提出了一种新的基于余弦的相关性 LDL 算法。
2)通过以下方式描述任意两个标签之间的相关性结合三元和距离相关性。
3)三元相关采用余弦相似度来表征标签之间的相关类别。
4)距离相关采用欧几里得距离来描述标签之间的相关程度。