前面的章节知识(点击跳转即可哦)
9 时间复杂度和空间复杂度
9.1 时间复杂度
一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,就是算法的时间复杂度。
实际中我们计算时间复杂度时,其实并不一定要计算精确的执行次数,而只需要大概执行次数,所以我们使用大O的渐进表示法。
大O符号(Big O notarion): 是用于描述函数渐进行为的数学符号。
大O阶函数的推到原则:
- 用常数1来代表所有的加法常数。 10 、 2 -> 1
- 最后的大O函数只保留最高阶项
- 若最高阶项还有系数,去掉这个系数,保留1 即可, 3N^2 -> N^2
// 请计算一下fun1基本操作执行了多少次?
void fun1(int N){
int ret = 0; // 1
for (int i = 0; i < N ; i++) {
for (int j = 0; j < N ; j++) {
ret++; // N*N
}
}
for (int k = 0; k < 2 * N ; k++) { 2N
ret++;
}
int M = 10;
while ((M--) > 0) { //10
ret++;
}
执行次数就是 N^2 + 2N + 10 + 1, 随着N的变大,只有最高阶项是影响这个算法的核心。所以它的时间复杂度是 O(N^2)。
算法的时间复杂度还分为三种情况:
- 最坏时间复杂度
- 最好时间复杂度
- 平均情况的时间复杂度
最坏时间复杂度
就是这个算法最大的运行时间。假如我们在一个数组个数为 N的数组内查找一个数字a,我们遍历整个数组,当这个数在数组的最后一个,这时就是最坏时间复杂度。O(N)
最好时间复杂度
当这个数在数组的第一个,刚开始遍历就找到了。O(1)
平均情况的时间复杂度
就是所有情况 / 情况的个数
一般我们以最坏时间复杂度当做算法的时间复杂度
还有这种情况
// 计算fun3的时间复杂度?
void fun3(int N, int M) {
int count = 0; // 1
for (int k = 0; k < M; k++) { // M
count++;
}
for (int k = 0; k < N ; k++) { //N
count++;
}
System.out.println(count);
}
此时M和N都是变量,无法确定谁大谁小,这种情况的时间复杂度就是O(M+N)。
// 计算二分查找的时间复杂度?
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) { // n
int mid = begin + ((end-begin) / 2); // n/2
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}
不要看见循环就是 O(n),还要看这个循环下次开始条件是什么
在二分查找中,下一次循环的开始或者终止就变成了区间的一半, 最后执行的次数就是 n / 2 / 2/ 2… = 1, 最后求执行了多少次除法操作。
log2N -> 都可以通过换底公式换为 lg
O(logN) 就是对数时间复杂度,与底数无关。
任何算法,若是不断 去除 任意数字,最后等于0 或者 1,这个算法的执行次数就是O(logN)。
快速排序就是对数级别的算法,O(nlogn)
一个递归函数的时间复杂度,要把这个递归函数展开,看一下递归的次数与变量N的关系。
// 计算阶乘递归的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}
拆开就是 n * n-1 * n-2 * n-3 * … * 1 => 相当于乘了N次 O(n)
// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}
实际上就是一颗二叉树的结点个数 2^n - 1 => O(2^n),这种算法大概率没办法用。
主要掌握O(1) , O(N) ,O(N^2) , O(logN), O(nlogn)。
9.2 空间复杂度
空间复杂度指的是 算法在执行过程中 额外开辟的内存空间!!
就看算法中有没有额外开辟“数组”空间
// 计算冒泡排序的空间复杂度?
void bubbleSort(int[] array) {
//这是外部传入的数组,不算我们算法自己产生数组,不算到空间复杂度的一部分
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
只有临时变量,没有开辟新的数组,空间复杂度就是 O(1),
要是定义了一堆变量,且这些变量的个数与N有关,int[] data = new int[n], => O(N)。
// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
开辟了一个长度为n+1的long数组,这个算法的空间复杂度就是O(n)
递归函数的空间复杂度
// 计算阶乘递归的空间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1)*N;
}
每次函数的调用过程,就对应一个函数的”栈帧“在栈中的入栈过程,递归函数调用几次,就需要开辟多少个栈帧空间
这个代码的空间复杂度就是O(N)
要是对大家有所帮助的话,请帮我点个赞吧。