bzoj 2005 [Noi2010]能量采集 数学

                                          bzoj 2005 能量采集

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2005

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4


【样例输入2】
3 4

Sample Output

【样例输出1】
36

【样例输出2】
20

【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。



这数学题出得.......

(0,0)到(x,y)上的整点个数为gcd(x,y)
枚举g,求最大公约数为g的数对的个数,最后求和。
f[g]表示最大公约数为g的数对的个数。
f[g]=[n/g]*[m/g]-f[g*2]-f[g*3]-f[g*4]……

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define ll long long
#define min(a,b) (a<b?a:b)

using namespace std;
ll n,m;
ll ans,f[100010];
int main()
{

    scanf("%d%d",&n,&m);
    for( int g=min(n,m);g;g--)
    {
        f[g]=(n/g)*(m/g);
        for(int j=g+g;j<=min(n,m);j+=g)
            f[g]-=f[j];
    }
    for(int i=min(n,m);i;i--)
        ans+=f[i]*(2*i-1);
    printf("%lld\n",ans);
    return 0;
}




发布了51 篇原创文章 · 获赞 0 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览