题解 CF1081C Colorful Bricks/ 排列组合入门

这题数据范围真是低到令人发指……完全可以用 Lucas / ExLucas 的【雾】
可以作为一道组合数学的入门题来做

给初学者讲一下排列组合(?)
首先考虑 n n n 个不同数中选 m m m有序排成一列一共有多少种方法,显然第一个位置有 n n n 中选法,第二个位置有 n − 1 n-1 n1 种选法(因为第一个位置已经确定了),以此类推,总数就是
n ! ( n − m ) ! \frac{n!}{(n-m)!} (nm)!n!
其中
n ! = ∏ i = 1 n i = n × ( n − 1 ) × . . . × 1 n!=\prod_{i=1}^{n}i=n\times(n-1)\times...\times1 n!=i=1ni=n×(n1)×...×1
特殊地
0 ! = 1 0!=1 0!=1
(为了防止 1 0 \frac{1}{0} 01 的出现)
上下约个分就发现是对的,我们称其为“排列”,记为
A n m = n ! ( n − m ) ! \text{A}_{n}^{m}=\frac{n!}{(n-m)!} Anm=(nm)!n!
其中 m = n m=n m=n 时答案为 n ! n! n!,即 n n n 个数的全排列个数。

考虑 n n n 个不同数中选 m m m组成一个集合一共有多少种方法,首先依然像排列一样考虑每个位置有几种选法,得
n ! ( n − m ) ! \frac{n!}{(n-m)!} (nm)!n!
此时因为集合有无序性,考虑重复的集合。因为现在是把集合当做排列来考虑,也就是说每种选法选了一个全排列,也就是 m ! m! m! 种,因此最终得到方法数为
n ! ( n − m ) !   m ! \frac{n!}{(n-m)!\ m!} (nm)! m!n!
记为
C n m = C ( n , m ) = ( n m ) = n ! ( n − m ) !   m ! \text{C}_{n}^m=\text{C}(n,m)=\binom{n}{m}=\frac{n!}{(n-m)!\ m!} Cnm=C(n,m)=(mn)=(nm)! m!n!


回到这道题, k k k 个不同位置可以看做将序列分成了 k + 1 k+1 k+1 段颜色相同的序列,考虑隔板法,也就是在 n − 1 n-1 n1 个位置里放 k k k 块板,共
( n − 1 k ) \binom{n-1}{k} (kn1)
种方法。接下来考虑每块的颜色,发现可以重复,但是要保证相邻块的颜色不同,第一块显然可以选 m m m 种,第二块和第一块不同,于是为 m − 1 m-1 m1 种,以此类推后面均为 m − 1 m-1 m1 种。整个序列共 k + 1 k+1 k+1 块,所以答案为
( n − 1 k ) × m × ( m − 1 ) k \binom{n-1}{k}\times m\times (m-1)^k (kn1)×m×(m1)k

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值