卢卡斯定理

卢卡斯定理

概述:

定理是用来求C(n,m) mod p的值。其中:n和m是非负整数,p是素数。一般用于m,n很大而p很小,或者n,m不大但大于怕、,这样用阶乘就解决不了问题。

结论:

L u c a s ( n , m , p ) = C n % p m % p ∗ L u c a s ( n / p , m / p , p ) % p Lucas(n,m,p)=C_n\%p^m\%p*Lucas(n/p,m/p,p)\%p Lucas(n,m,p)=Cn%pm%pLucas(n/p,m/p,p)%p
L u c a s ( x , 0 , p ) = = 0 , C a b = a ! ∗ ( b ! ( a − b ) ! ) p − 2 m o d p Lucas(x,0,p)==0,C_a^b=a!*(b!(a-b)!)^{p-2}modp Lucas(x,0,p)==0,Cab=a!(b!(ab)!)p2modp

其实就是相当与将n写成p进制数每一位求组合数,再进行相乘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值