两数中较大的质数(c++)

我的第一篇题解(多多包容)

题面:

题目描述

已知正整数 n 是两个不同的质数的乘积(不包括1和它本身),试求出两者中较大的那个质数。

输入格式

输入一个正整数 n。

输出格式

输出一个正整数 p,即较大的那个质数。

输入输出样例

输入 #1

21

输出 #1

7

输入 #2

15

 输出 #2

5

说明/提示

100%的样例:1<=n<=1e9

题目解释:

就是给出了一个只有两个质数乘起来的质数,让我们求较大的那个质数。

开始解题:

可以从2枚举到n,每一次判断i是否为n的因子。是,输出i并退出for循环;否,继续枚举。

时间复杂度(O(n))

其他也没什么可说的了,打好基础就能做这一题。

最后,贴上代码:(AC)

#include <iostream>
#include <cmath>
using namespace std;
int main() {
    int n;
    cin >> n;
    for (int i = 2; i <= sqrt(n) ; i++) {//枚举到sqrt(n),,因为最坏时是i*i==n。
        if (n % i == 0) { 
            cout << n / i;
            break;
        }
    }
    return 0;
}

看到这儿,留个赞再走吧!!!

原题

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 根据唯一分定理,正整数n可以唯一分为若干个质数乘积。因为n是两个不同质数乘积,所以n的质因数分式为n=p*q,其p和q是两个不同质数。 由于p和q都是质数,所以它们较大的那个一定比较小的那个大。因此,我们只需要比较p和q的大小即可确定较大的那个质数。 综上所述,较大的那个质数是max(p,q)。 ### 回答2: 首先我们需要了质数的概念。质数是指除了1和它本身之外,不能被其他正整数整除的正整数,比如2、3、5、7、11等等。因为两个质数相乘得到的结果也是正整数,所以我们可以推断n必然是一个由两个质数相乘得来的正整数。 我们来考虑一个例子,如果n=15,它可以表示为n=3×5,3和5都是质数,那么我们就可以得15的较大质数是5。 我们可以举一些其他的例子来帮助理。如果n=77,它可以表示为n=7×11,7和11都是质数,因此它的较大质数是11;如果n=91,它可以表示为n=7×13,7和13都是质数,因此它的较大质数是13。 综上所述,如果已知正整数n是两个不同质数乘积,我们可以通过将n分两个质数相乘的形式,然后比较这两个质数的大小,来求n的较大质数。 ### 回答3: 首先,我们需要了质数的定义。质数是只能被1和自身整除的正整数。另外,我们知道两个质数相乘的结果也是一个正整数。 假设这两个质数分别是p和q(p≠q),那么根据题目所给的条件,我们可以得到n=p×q。 为了求两个质数较大的那个,我们需要比较p和q的大小。下面提供两种方法: 方法一:从小到大枚举质数 由于p和q都是质数,所以从小到大枚举正整数,找到p和q的值即可。具体步骤如下: 1. 从2开始,逐个枚举正整数,如果能够整除n,那么就可以得到一个质数因子p。 2. 则另一个质数因子q=n/p。 3. 比较p和q的大小,较大的那个即为所求。 方法二:从大到小枚举质数 由于p和q都是质数,根据质数的特性,p和q必然大于等于根号n。所以,我们可以从大到小枚举p的值,找到能够整除n的最大的质数p,即可求q=n/p。 具体步骤如下: 1. 从根号n开始,逐个枚举正整数,如果能够整除n,那么就可以得到一个质数因子p。 2. 则另一个质数因子q=n/p。 3. 比较p和q的大小,较大的那个即为所求。 综上所述,我们可以使用枚举质数的方法求两个质数较大的那个。方法一比较简单,但是需要枚举的次数较多。方法二效率更高,但是需要注意从根号n开始枚举。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值