题目描述
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
输入
数据的第一行是一个T,表示有T组数据。每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
输出
对应每组数据,输出Tr(A^k)%9973。
样例输入 Copy
3
1 42
7
2 6335
0 9
4 8
3 29359
2 4 5
5 1 7
1 1 5
样例输出 Copy
3969
5510
5473
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int mod=9973;
struct node
{
ll ma[101][101];
};
int n,k;
node mul(node a,node b)
{
node ans;
memset(ans.ma,0,sizeof ans.ma);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ans.ma[i][j]=(ans.ma[i][j]+a.ma[i][k]*b.ma[k][j])%mod;
return ans;
}
node pow(node a,int b)
{
node ans;
memset(ans.ma,0,sizeof ans.ma);
for(int i=1;i<=n;i++) ans.ma[i][i]=1;
while(b)
{
if(b&1) ans=mul(ans,a);
a=mul(a,a);
b>>=1;
}
return ans;
}
int main()
{
int t;
cin >>t;
while(t--)
{
scanf("%d %d",&n,&k);
node a;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a.ma[i][j]);
node ans=pow(a,k);
ll sum=0;
for(int i=1;i<=n;i++) sum=(sum+ans.ma[i][i])%mod;
cout <<sum<<endl;
}
return 0;
}
#include<stdio.h>
#include<string.h>
typedef struct Matrix
{
int M[15][15];
Matrix()
{
memset(M,0,sizeof(M));
}
}Matrix;
Matrix M_multi(Matrix m1,Matrix m2,int n)
{
Matrix m3;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<n;k++)
{
m3.M[i][j]+=(m1.M[i][k]%9973)*(m2.M[k][j]%9973);
}
m3.M[i][j]%=9973;
}
}
return m3;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,k,sum=0;
Matrix t,ans;
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
scanf("%d",&t.M[i][j]);
if(i==j)
ans.M[i][j]=1;
}
}
while(k)
{
if(k&1)
ans=M_multi(ans,t,n);
t=M_multi(t,t,n);
k>>=1;
}
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i==j)
sum+=ans.M[i][j]%9973;
}
}
printf("%d\n",sum%9973);
}
return 0;
}