问题 CH: Tr A

题目描述

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。

输入

数据的第一行是一个T,表示有T组数据。每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。

输出

对应每组数据,输出Tr(A^k)%9973。

样例输入 Copy

3
1 42
7
2 6335
0 9
4 8
3 29359
2 4 5
5 1 7
1 1 5

样例输出 Copy

3969
5510
5473

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
 using namespace std;
 typedef long long ll;
 const int mod=9973;
struct node
{
    ll ma[101][101];
};
 int n,k;
 node mul(node a,node b)
 {
     node ans;
     memset(ans.ma,0,sizeof ans.ma);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
         for(int k=1;k<=n;k++)
            ans.ma[i][j]=(ans.ma[i][j]+a.ma[i][k]*b.ma[k][j])%mod;
    return ans;
 }
 node pow(node a,int b)
 {
     node ans;
     memset(ans.ma,0,sizeof ans.ma);
     for(int i=1;i<=n;i++) ans.ma[i][i]=1;
     while(b)
     {
         if(b&1) ans=mul(ans,a);
         a=mul(a,a);
         b>>=1;
     }
     return ans;
 }
 int main()
 {
     int t;
     cin >>t;
     while(t--)
     {
         scanf("%d %d",&n,&k);
         node a;
         for(int i=1;i<=n;i++)
             for(int j=1;j<=n;j++)
                scanf("%d",&a.ma[i][j]);
         node ans=pow(a,k);
        ll sum=0;
        for(int i=1;i<=n;i++) sum=(sum+ans.ma[i][i])%mod;
        cout <<sum<<endl;
    }
     return 0;
 }
#include<stdio.h>
#include<string.h>
typedef struct Matrix
{
	int M[15][15];
	Matrix()
	{
		memset(M,0,sizeof(M));
	}
}Matrix;
Matrix M_multi(Matrix m1,Matrix m2,int n)
{
	Matrix m3;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			for(int k=0;k<n;k++)
			{
				m3.M[i][j]+=(m1.M[i][k]%9973)*(m2.M[k][j]%9973);
			}
			m3.M[i][j]%=9973;
		}
	}
	return m3;
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n,k,sum=0;
		Matrix t,ans;
		scanf("%d%d",&n,&k);
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			{
				scanf("%d",&t.M[i][j]);
				if(i==j)
					ans.M[i][j]=1;
			}
		}
		while(k)
		{
			if(k&1)
				ans=M_multi(ans,t,n);
			t=M_multi(t,t,n);
			k>>=1;
		}
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			{
				if(i==j)
					sum+=ans.M[i][j]%9973;
			}
		}
		printf("%d\n",sum%9973);
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值