橙子果品分级-图像分类数据集

橙子果品分级-图像分类数据集

数据集:
链接: https://pan.baidu.com/s/1BV5A7SquhaR1GjOaJMvUZQ?pwd=n2u5 
提取码: n2u5 

数据集信息介绍:

文件夹 Orange_Bad 中的图片数量: 4873

文件夹 Orange_Good 中的图片数量: 4704

所有子文件夹中的图片总数量: 9577

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

写论文参考

基于深度学习的橙子果品分级研究

摘要

随着人工智能和图像识别技术的快速发展,基于计算机视觉的果品分级系统在现代农业中的应用愈加广泛。本文以橙子果品的分级识别为研究对象,构建了一个包含9577张图像的数据集,图像分别来自“Orange_Good”(4704张)和“Orange_Bad”(4873张)两个类别。我们基于卷积神经网络(CNN)构建分类模型,对橙子进行优劣分类。通过数据预处理、模型训练与优化、实验评估等环节,实验结果表明,该方法在橙子分级识别中具有良好的识别精度与实际应用价值。

1. 引言

橙子作为一种广受欢迎的水果,其品质在采后管理与市场销售中起着关键作用。传统的人工分级方法存在主观性强、效率低的问题,亟需一种自动化、智能化的分级手段。随着深度学习特别是卷积神经网络(CNN)技术的兴起,基于图像的果品质量分级成为研究热点。

本研究聚焦于橙子果品的自动分级问题,利用包含近万张图像的数据集,通过构建深度学习分类模型,自动区分“优质橙子”和“次品橙子”,旨在为果品自动分级提供技术支撑,推动智慧农业发展。

2. 数据集介绍

本研究使用的数据集共计9577张橙子图像,分布如下:

  • Orange_Good(优质橙子):4704张
  • Orange_Bad(次品橙子):4873张

图像来自实际采集,涵盖不同光照、角度和表面状态,具有较强的代表性。每张图像分辨率约为640x480像素,图像中包含单一或多个橙子。

3. 深度学习图像分类方法概述

3.1 卷积神经网络(CNN)

CNN 是目前图像分类任务中最常用的深度学习模型,具有局部感知、权重共享和层次结构的优势,能有效提取图像中的空间特征。

常见的CNN架构包括:

  • LeNet
  • AlexNet
  • VGG
  • ResNet
  • EfficientNet

3.2 模型选择

本研究选用ResNet-50作为基础模型,在ImageNet预训练权重基础上进行迁移学习。ResNet使用残差结构,解决深层网络训练中的梯度消失问题,适合较复杂的图像分类任务。

4. 数据预处理与增强

为提升模型性能和泛化能力,我们对数据进行了如下处理:

4.1 数据划分

  • 训练集:70%(约6704张)
  • 验证集:20%(约1915张)
  • 测试集:10%(约958张)

保证每个类别在各子集中分布均衡。

4.2 图像增强

  • 随机旋转(±15°)
  • 水平翻转
  • 随机裁剪和缩放
  • 亮度/对比度调整

增强后的图像可以缓解过拟合,提高模型鲁棒性。

5. 模型训练与优化

5.1 网络结构

ResNet-50由多个残差块组成,包含卷积层、批归一化(BatchNorm)、ReLU激活函数和全连接层,最后通过softmax输出两个类别的概率。

5.2 超参数设置

  • 优化器:Adam
  • 学习率:0.001(使用学习率衰减)
  • 批大小:32
  • 训练轮数:50
  • 损失函数:交叉熵损失(Cross-Entropy Loss)

5.3 迁移学习策略

  • 冻结ResNet前四个block参数,仅训练分类层
  • 模型稳定后,解冻全部参数,微调全网权重

6. 实验结果与分析

6.1 评估指标

  • 准确率(Accuracy)
  • 精确率(Precision)
  • 召回率(Recall)
  • F1分数(F1 Score)
  • 混淆矩阵(Confusion Matrix)

6.2 结果统计

类别PrecisionRecallF1-scoreSupport
Good0.940.950.945470
Bad0.960.940.95488
平均0.950.9450.947958

模型在测试集上取得 95% 左右的分类准确率,表明其具有较强的识别能力。

6.3 可视化分析

通过Grad-CAM技术对模型预测进行可视化,发现模型关注橙子的表面瑕疵、病斑等特征区域,验证了模型学习到的有效视觉模式。

7. 实际应用与部署

7.1 应用场景

  • 果品采后自动分级系统
  • 自动化包装流水线
  • 智慧果园产地初筛

7.2 部署形式

  • 边缘部署:部署在Jetson Nano、树莓派等低功耗设备,实现本地识别
  • 云端部署:结合摄像头与服务器,实现远程识别与数据分析

8. 未来展望

  • 引入多分类分级(优等、一等、二等、病变)
  • 结合目标检测算法,定位瑕疵区域
  • 多模态学习,结合颜色、纹理等多特征融合
  • 与果品追溯系统集成,实现全流程管理

9. 结论

本文基于9577张橙子图像,构建了一个基于深度卷积网络的果品分级系统。实验结果显示,ResNet-50模型在橙子优劣分类任务中具有优异表现,在实际应用中具备部署可行性。该研究为果品自动分级提供了有效路径,为智慧农业发展贡献了技术方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值