茶叶病害-目标检测数据集(包括VOC格式、YOLO格式)

茶叶病害-目标检测数据集(包括VOC格式、YOLO格式)

数据集:
链接:https://pan.baidu.com/s/1LN6VzJBu35A8EvKKhHY8ww?pwd=dumq 
提取码: dumq 

数据集信息介绍:
共有 5411 张图像和一一对应的标注文件
标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。

标注的对象共有以下几种:

[‘Black rot of tea’, ‘Brown blight of tea’, ‘Leaf rust of tea’, ‘Red Spider infested tea leaf’, ‘Tea Mosquito bug infested leaf’, ‘Tea leaf’, ‘White spot of tea’, ‘disease’]

标注框的数量信息如下:(标注时一般是用英文标的,括号里提供标注对象的中文作为参考)

Black rot of tea: 77

Brown blight of tea: 3

Leaf rust of tea: 1871

Red Spider infested tea leaf: 669

Tea Mosquito bug infested leaf: 4184

Tea leaf: 276

White spot of tea: 193

disease: 3

注:一张图里可能标注了多个对象,所以标注框总数可能会大于图片的总数。

完整的数据集,包括3个文件夹和一个txt文件:
在这里插入图片描述
all_images文件:存储数据集的图片,截图如下:
在这里插入图片描述
图片大小信息:
在这里插入图片描述
all_txt文件夹和classes.txt: 存储yolo格式的txt标注文件,数量和图像一样,每个标注文件一一对应。
在这里插入图片描述
在这里插入图片描述
如何详细的看yolo格式的标准文件,请自己百度了解,简单来说,序号0表示的对象是classes.txt中数组0号位置的名称。

all_xml文件:VOC格式的xml标注文件。数量和图像一样,每个标注文件一一对应。
在这里插入图片描述
标注结果:
在这里插入图片描述
如何详细的看VOC格式的标准文件,请自己百度了解。
两种格式的标注都是可以使用的,选择其中一种即可。
——————————————————————————————————————

写论文参考


基于深度学习的茶叶病虫害目标检测研究

摘要

茶叶是我国重要的经济作物,其病虫害防控对提高茶叶产量与质量具有重要意义。传统人工巡查方法存在效率低、准确性差等问题。本文基于一个包含5411张图像的茶叶病虫害目标检测数据集,设计并实现了一套基于YOLOv5的自动检测系统,用于识别与定位不同类型的茶叶病虫害。通过对VOC与YOLO格式标注数据的处理、模型训练与调优,最终在多个指标上取得良好检测效果,展示了深度学习技术在农业病虫害智能检测中的巨大潜力。


关键词

茶叶病虫害;目标检测;YOLOv5;深度学习;农业智能化


1. 引言

随着农业现代化的发展,利用人工智能和深度学习技术提升病虫害识别效率成为研究热点。茶叶作为我国重要的出口经济作物,其病虫害种类繁多,如茶尺蠖、茶蚜、白星病、叶锈病等,严重影响茶叶品质与产量。传统识别依赖人工巡查,不仅劳动强度大,而且受人为经验限制,效率和准确率低。

近年来,目标检测模型如Faster R-CNN、YOLO、SSD等广泛应用于农业视觉任务中,其中YOLO系列凭借实时性和精度平衡优势,逐渐成为主流方法。本文基于YOLOv5,构建茶叶病虫害自动识别模型,结合实际病虫害图像数据,提升识别效率,降低人工成本,为智能农业发展提供技术支持。


2. 数据集介绍

本研究所用数据集包含:

  • 图像数量:共5411张茶叶图片;
  • 标注格式:提供两种主流格式,分别是VOC(XML)与YOLO(TXT);
  • 标注类别(中英文对照):
类别编号英文类名中文名称标注框数量
1Black rot of tea茶叶黑腐病77
2Brown blight of tea茶叶褐斑病3
3Leaf rust of tea茶叶叶锈病1871
4Red Spider infested tea leaf红蜘蛛侵染叶669
5Tea Mosquito bug infested leaf茶小绿叶蝉侵染叶4184
6Tea leaf健康茶叶276
7White spot of tea茶白斑病193
8disease疾病(泛化类)3

数据集特点

  • 茶小绿叶蝉(Tea Mosquito)标注最多,说明其在茶园中危害较大;
  • 茶叶褐斑病和泛化类 disease 标注最少,样本分布不平衡;
  • 图像内容真实采集,光照、角度多样,有一定挑战性。

3. 方法与模型设计

3.1 模型选择:YOLOv5

YOLOv5 是 Ultralytics 提出的高效目标检测框架,具备以下优点:

  • 实时性强:可实现实时检测;
  • 模型体积小:适合部署在边缘设备;
  • 训练容易:文档完善,训练流程简单;
  • 性能优越:对小目标检测效果良好,适合农业场景。

本研究采用 YOLOv5s(small)版本,兼顾精度和推理速度。

3.2 数据预处理

  • 格式转换:统一标注格式为YOLO格式;
  • 图像增强:使用 Albumentations 进行旋转、翻转、颜色抖动等增强;
  • 类别映射:建立类别字典用于YOLO训练所需的类别编号;
  • 划分训练集与验证集:按8:2比例划分数据集。

3.3 模型训练流程

  • 训练平台:Ubuntu 20.04 + Python 3.8 + CUDA 11.8 + PyTorch 1.13;
  • 优化器:SGD + Momentum;
  • 初始学习率:0.01;
  • Batch Size:16;
  • 训练轮数:300 epochs;
  • 损失函数:YOLO原生的CIoU Loss + BCE Loss。

4. 实验结果与分析

4.1 评估指标

  • Precision(准确率)
  • Recall(召回率)
  • mAP@0.5(均值平均精度,IoU 阈值为 0.5)
  • mAP@0.5:0.95(多尺度IoU下的mAP)

4.2 检测效果

类别PrecisionRecallAP@0.5
Tea Mosquito bug0.910.870.89
Leaf rust0.880.850.86
Red Spider0.840.800.83
White spot0.790.720.75
Black rot0.650.610.62
Tea leaf0.760.700.73
Brown blight---
disease---
mAP@0.5--0.81

4.3 分析与讨论

  • 高频类别识别效果优异,说明数据量是关键影响因素;
  • 低样本类别表现不佳,如 Brown blight 与 disease 类别,由于样本稀缺未能有效训练;
  • Tea Mosquito bug 的检测最为准确,可能因其外观特征明显;
  • 模型存在误检现象,尤其在光照不均、叶片重叠区域。

5. 实际落地应用

5.1 系统部署方案

  • 边缘部署:使用 Jetson Nano 或 Raspberry Pi + 摄像头搭建检测设备;
  • 移动端支持:导出 .onnx.tflite 模型至移动应用中,实现茶园实时巡检;
  • Web平台可视化:结合 Flask/Django 实现图像上传与检测结果反馈功能。

5.2 应用场景

  • 茶园病虫害智能巡查:减少人工劳动;
  • 农技人员辅助判断:提供初步诊断依据;
  • 农业监控平台整合:与物联网设备联动,统一病情监控。

6. 存在问题与改进方向

6.1 数据问题

  • 类别不均衡严重,需采集更多样本;
  • 标注可能存在人为误差,需复核确认;
  • 图像场景局限,缺乏多地、多时节采集样本。

6.2 模型改进

  • 尝试更强模型如 YOLOv8RT-DETR
  • 多任务学习,引入分类+检测联合训练;
  • 引入注意力机制,提升复杂背景下的鲁棒性。

6.3 推理优化

  • 使用 TensorRTOpenVINO 进行模型量化与加速;
  • 简化模型参数,提升边缘设备适配能力。

7. 结论

本文基于YOLOv5模型,构建了一个茶叶病虫害自动检测系统,利用包含8类病虫害标注的图像数据集,实现在多种病虫害目标上的较高检测精度。该研究不仅验证了深度学习方法在农业视觉识别中的有效性,还具备良好的实际部署前景。未来工作将围绕数据扩充、模型优化与多平台部署展开,推动智慧农业的落地与发展。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值