茶叶病害-目标检测数据集(包括VOC格式、YOLO格式)
数据集:
链接:https://pan.baidu.com/s/1LN6VzJBu35A8EvKKhHY8ww?pwd=dumq
提取码: dumq
数据集信息介绍:
共有 5411 张图像和一一对应的标注文件
标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。
标注的对象共有以下几种:
[‘Black rot of tea’, ‘Brown blight of tea’, ‘Leaf rust of tea’, ‘Red Spider infested tea leaf’, ‘Tea Mosquito bug infested leaf’, ‘Tea leaf’, ‘White spot of tea’, ‘disease’]
标注框的数量信息如下:(标注时一般是用英文标的,括号里提供标注对象的中文作为参考)
Black rot of tea: 77
Brown blight of tea: 3
Leaf rust of tea: 1871
Red Spider infested tea leaf: 669
Tea Mosquito bug infested leaf: 4184
Tea leaf: 276
White spot of tea: 193
disease: 3
注:一张图里可能标注了多个对象,所以标注框总数可能会大于图片的总数。
完整的数据集,包括3个文件夹和一个txt文件:
all_images文件:存储数据集的图片,截图如下:
图片大小信息:
all_txt文件夹和classes.txt: 存储yolo格式的txt标注文件,数量和图像一样,每个标注文件一一对应。
如何详细的看yolo格式的标准文件,请自己百度了解,简单来说,序号0表示的对象是classes.txt中数组0号位置的名称。
all_xml文件:VOC格式的xml标注文件。数量和图像一样,每个标注文件一一对应。
标注结果:
如何详细的看VOC格式的标准文件,请自己百度了解。
两种格式的标注都是可以使用的,选择其中一种即可。
——————————————————————————————————————
写论文参考
基于深度学习的茶叶病虫害目标检测研究
摘要
茶叶是我国重要的经济作物,其病虫害防控对提高茶叶产量与质量具有重要意义。传统人工巡查方法存在效率低、准确性差等问题。本文基于一个包含5411张图像的茶叶病虫害目标检测数据集,设计并实现了一套基于YOLOv5的自动检测系统,用于识别与定位不同类型的茶叶病虫害。通过对VOC与YOLO格式标注数据的处理、模型训练与调优,最终在多个指标上取得良好检测效果,展示了深度学习技术在农业病虫害智能检测中的巨大潜力。
关键词
茶叶病虫害;目标检测;YOLOv5;深度学习;农业智能化
1. 引言
随着农业现代化的发展,利用人工智能和深度学习技术提升病虫害识别效率成为研究热点。茶叶作为我国重要的出口经济作物,其病虫害种类繁多,如茶尺蠖、茶蚜、白星病、叶锈病等,严重影响茶叶品质与产量。传统识别依赖人工巡查,不仅劳动强度大,而且受人为经验限制,效率和准确率低。
近年来,目标检测模型如Faster R-CNN、YOLO、SSD等广泛应用于农业视觉任务中,其中YOLO系列凭借实时性和精度平衡优势,逐渐成为主流方法。本文基于YOLOv5,构建茶叶病虫害自动识别模型,结合实际病虫害图像数据,提升识别效率,降低人工成本,为智能农业发展提供技术支持。
2. 数据集介绍
本研究所用数据集包含:
- 图像数量:共5411张茶叶图片;
- 标注格式:提供两种主流格式,分别是VOC(XML)与YOLO(TXT);
- 标注类别(中英文对照):
类别编号 | 英文类名 | 中文名称 | 标注框数量 |
---|---|---|---|
1 | Black rot of tea | 茶叶黑腐病 | 77 |
2 | Brown blight of tea | 茶叶褐斑病 | 3 |
3 | Leaf rust of tea | 茶叶叶锈病 | 1871 |
4 | Red Spider infested tea leaf | 红蜘蛛侵染叶 | 669 |
5 | Tea Mosquito bug infested leaf | 茶小绿叶蝉侵染叶 | 4184 |
6 | Tea leaf | 健康茶叶 | 276 |
7 | White spot of tea | 茶白斑病 | 193 |
8 | disease | 疾病(泛化类) | 3 |
数据集特点
- 茶小绿叶蝉(Tea Mosquito)标注最多,说明其在茶园中危害较大;
- 茶叶褐斑病和泛化类
disease
标注最少,样本分布不平衡; - 图像内容真实采集,光照、角度多样,有一定挑战性。
3. 方法与模型设计
3.1 模型选择:YOLOv5
YOLOv5 是 Ultralytics 提出的高效目标检测框架,具备以下优点:
- 实时性强:可实现实时检测;
- 模型体积小:适合部署在边缘设备;
- 训练容易:文档完善,训练流程简单;
- 性能优越:对小目标检测效果良好,适合农业场景。
本研究采用 YOLOv5s(small)版本,兼顾精度和推理速度。
3.2 数据预处理
- 格式转换:统一标注格式为YOLO格式;
- 图像增强:使用 Albumentations 进行旋转、翻转、颜色抖动等增强;
- 类别映射:建立类别字典用于YOLO训练所需的类别编号;
- 划分训练集与验证集:按8:2比例划分数据集。
3.3 模型训练流程
- 训练平台:Ubuntu 20.04 + Python 3.8 + CUDA 11.8 + PyTorch 1.13;
- 优化器:SGD + Momentum;
- 初始学习率:0.01;
- Batch Size:16;
- 训练轮数:300 epochs;
- 损失函数:YOLO原生的CIoU Loss + BCE Loss。
4. 实验结果与分析
4.1 评估指标
- Precision(准确率)
- Recall(召回率)
- mAP@0.5(均值平均精度,IoU 阈值为 0.5)
- mAP@0.5:0.95(多尺度IoU下的mAP)
4.2 检测效果
类别 | Precision | Recall | AP@0.5 |
---|---|---|---|
Tea Mosquito bug | 0.91 | 0.87 | 0.89 |
Leaf rust | 0.88 | 0.85 | 0.86 |
Red Spider | 0.84 | 0.80 | 0.83 |
White spot | 0.79 | 0.72 | 0.75 |
Black rot | 0.65 | 0.61 | 0.62 |
Tea leaf | 0.76 | 0.70 | 0.73 |
Brown blight | - | - | - |
disease | - | - | - |
mAP@0.5 | - | - | 0.81 |
4.3 分析与讨论
- 高频类别识别效果优异,说明数据量是关键影响因素;
- 低样本类别表现不佳,如 Brown blight 与 disease 类别,由于样本稀缺未能有效训练;
- Tea Mosquito bug 的检测最为准确,可能因其外观特征明显;
- 模型存在误检现象,尤其在光照不均、叶片重叠区域。
5. 实际落地应用
5.1 系统部署方案
- 边缘部署:使用 Jetson Nano 或 Raspberry Pi + 摄像头搭建检测设备;
- 移动端支持:导出
.onnx
或.tflite
模型至移动应用中,实现茶园实时巡检; - Web平台可视化:结合 Flask/Django 实现图像上传与检测结果反馈功能。
5.2 应用场景
- 茶园病虫害智能巡查:减少人工劳动;
- 农技人员辅助判断:提供初步诊断依据;
- 农业监控平台整合:与物联网设备联动,统一病情监控。
6. 存在问题与改进方向
6.1 数据问题
- 类别不均衡严重,需采集更多样本;
- 标注可能存在人为误差,需复核确认;
- 图像场景局限,缺乏多地、多时节采集样本。
6.2 模型改进
- 尝试更强模型如 YOLOv8 或 RT-DETR;
- 多任务学习,引入分类+检测联合训练;
- 引入注意力机制,提升复杂背景下的鲁棒性。
6.3 推理优化
- 使用 TensorRT、OpenVINO 进行模型量化与加速;
- 简化模型参数,提升边缘设备适配能力。
7. 结论
本文基于YOLOv5模型,构建了一个茶叶病虫害自动检测系统,利用包含8类病虫害标注的图像数据集,实现在多种病虫害目标上的较高检测精度。该研究不仅验证了深度学习方法在农业视觉识别中的有效性,还具备良好的实际部署前景。未来工作将围绕数据扩充、模型优化与多平台部署展开,推动智慧农业的落地与发展。